Archive for the ‘Makale’ Category

Ben giderim sosyal medyam kalır

Posted by: Pelikan®   
Mayıs 19th,
2011

Diyenlerdenseniz eğer sizin için öldükten sonra geride kalan medya hesaplarınızın yönetimine talip olan bir kuruluş var ve bunu onlarca sosyal medya hesabınız için yapabilecekler…

Özellikle sosyal medya kullanımının artması ve internet üzerinde kendimizi ifade etmemizi sağlayan platformların çoğalmasıyla birlikte, çoğumuz internet üzerinde eskisinden çok daha fazla iz bırakır olduk. Facebook profilleri, Twitter hesapları, e-posta mesajları, fotoğraflar, yorumlar, notlar, biyografiler, e-ticaret kayıtları derken, elimizde ne varsa döke saça ilerliyoruz. Peki ama biz öldükten sonra tüm bunlara ne olacak?

life Yazının tamamı »

Karar anı – Prof.Dr. Kemal Sayar

Posted by: Pelikan®   
Haziran 29th,
2010

Hayat, aldığımız kararların toplamıdır.

Sıradan saydığımız bir gün içerisinde bile, o günkü hayatımızla ilgili onlarca karar veririz. Hangi  kıyafeti giyeceğimizi, o gün için işteki önceliklerimizi, kabul edeceğimiz teklifleri, yapacağımız alışverişleri, yürüyeceğimiz yolu ve daha birçok etkinliğimizi kararlaştırırız. Çoğu zaman seçim yaptığımızı ve bu seçimlere dayalı kararlar verdiğimizi anlamayız. Sadece mavi gömleğimizi giymek, bir dilim çikolatalı kek yemek ve iş yerimize giden çeşitli yolların birinden gitmek “istemişizdir”.

İstemek, insan için hayatidir..

Önümüze bir hedef koymamızı ve o hedefe yönelik hamleler yapmamızı gerektirir. İsteğin olmadığı bir dünyada karar vermek imkânsız olur. Acıkıp bir lokantaya gittiğimizde önümüzdeki menüden bir seçim yapmak zorundayızdır. Listelenmiş yemeklerden birini seçip sipariş vermek açlığımızı dindirmek için yapmamız gereken ilk harekettir. Peki ne yiyeceğimize nasıl karar veririz? Cevap basit: Seçeneklerden biri bizim için daha cezbedici olacak ve diğerleri elenecektir. Böylece sadece karar vermek, en temel ihtiyacımızı, “beslenmemizi” sağlar.

Bu yazı hoşunuza gittiyse beyniniz “dopamin” salgılıyor.

Aslında birkaç saniye içerisinde gerçekleşen bu olayın ne derecede büyük ve önemli bir beyinsel fonksiyon gerektirdiğini bilmek, insanın muhteşem yapısını anlamamıza biraz daha yardımcı olacaktır. Menüden yiyeceğimiz yemeği seçmek sanıldığı kadar basit değildir. Bir yandan yazıları okuyup her bir ismin hangi yemeği temsil ettiğini anlarız. Öte yandan listede ilerledikçe, beynimizde nükleus akümbens adı verilen çok önemli bir yapı, “dopamin” adı verilen bir kimyasal salgılayarak çalışmaya başlar.

Yazının tamamı »

Erkek kedi…

Posted by: Pelikan®   
Şubat 6th,
2010

Prof. Özcan Köknel, ” Çatışan Değerlerimiz ” adlı kitabında şöyle bir
örnek vermiş:

Soru: ” Erkek kedi bir ağaca çıkmış ve inmek bilmiyor. Kediyi o
ağaçtan indirmek için ne yaparsınız? ”

Önce şıkları okuyun kararınızı verin ve sonra değerlendirmeye geçin…

Şıklar :

1) Ağaca Tırmanırsınız.
2) Merdiven dayayıp tırmanırsınız.
3) “Gel pisipisi” diye seslenirsiniz
4) Dişi bir kedi getirirsiniz.
5) İtfaiyeyi çağırırsınız.

Değerlendirme:

1) Ağaca tırmandıysanız; cesur ve girişkensiniz. İyi bir “satış
temsilcisi” olursunuz.

2) Ağaca merdiven dayadıysanız; hedefe hangi yöntemle ulaşacağınızı
planlayabiliyorsunu z. İyi bir “halkla ilişkiler müdürü” olursunuz.

3) “Gel pisipisi” diye seslendiyseniz, saflık derecesinde
iyimsersiniz. Ne yaparsanız, yapın, sakın kendi işinizi kurmayın.

4) Dişi bir kedi getirdiyseniz; kendi işinizi kurup çok başarılı ve
ünlü olabilirsiniz.

5) İtfaiye gibi kurtarıcı görevlileri aradıysanız; sorumluluğu
başkalarına atmayı beceren “iyi bir üst düzey yönetici” olursunuz.

ve bazı eklemeler

6) Ağacı kesersiniz, böylece başka kedilerin çıkmasını da engellemiş
olursunuz: Sizden mükemmel bir ” kamu yöneticisi ” olur.

7) “Bana ne” deyip yolunuza devam edersiniz. Sizden çok iyi bir
Türkiye Cumhuriyeti vatandaşı olur.

8) Kendiniz dişi kedi kılığına girip ağacın altında cilve yaparsınız.
Magazin medyası peşinizi bırakmaz, şöhret olursunuz.

Kuram ve Teoriler

Posted by: Pelikan®   
Eylül 28th,
2008
Aristoteles Evren Modeli

M.Ö. 4. yüzyılda Platon’un iki küreli evren modeli geçerli olan modeldi. Bu modele göre evren iki küreden ibaretti. Birinci küre, merkezde bulunan Dünyamız, diğeri ise yıldızların oluşturduğu dış küredir ve bir günde bir tam tur dönmekteydi. Gezegenlerde bu iki küre arasında hareket ediyordu. Peki, “Gezegenlerin tek düze ve ard arda hareketinin nedeni nedir?”

Soruya ilk cevap yine Platon’un öğrencilerinden Eudoxus’dan gelmiştir. Euodxus’a göre evren ortak bir merkez üzerinde iç içe geçmiş farklı eğimlerde dönme eksenleri olan kürelerden oluşuyordu. En içte hareketsiz duran küre Dünyamız. İçten dışa doğru Ay, Merkür, Venüs, Güneş, Mars, Jüpiter, Satürn’e ait küreler dizilmektedir. En dışta bir tam turunu bir günde tamamlayan yıldızları içeren küre vardı. Ancak bu kürelerin sayısı, 56′ya kadar çıkmalıydı ki gezegenlerin hareketine uygun bir model olsun, böylece bunu fark eden Aristoteles ile birlikte 56 küreden oluşmuş bir evren modeli elde edilmiş oldu.

Aristoteles, sınıflandırmalar yaparken fizik ve metafizik konular diye ayrım yapmıştır. Fizik konular somut nesnel olanın konusu, metafizik ise “fizik ötesi” konular anlamına gelmektedir. Evren ile ilgili modeli de metafizik konularla ilgili kitabında yer almaktadır. Bu kitapta, Aristoteles Eudoxus’un fikrini değerlendirmeye alıp kendisine göre uyarlamalar yapmıştır.

Aristoteles’e göre her bir kürenin hareketi bir dıştaki küre tarafından yönetilmektedir. En dıştaki küre, yani yıldızları içeren küre ise kusursuz hareket ettirici idi ve ilk hareket ettirici tanrı tarafından harekete geçirilmişti. Çünkü ona göre her hareket eden şeyin bir hareket ettiricisi olmalıydı.

Aristoteles evreni ikiye bölmüştü; Ay’ın üzerinde bulunduğu, Dünya’dan sonraki ilk küreye kadar ki yerler su, hava, ateşi içeren fiziksel dünya, ondan sonrası ise ruhsal alemlerdi. Aristoteles’in evreni sınırlı bir evrendi, çünkü en dıştaki sabit yıldızlar küresi sınırsız büyüklükte olsaydı eğer sınırlı sürede sınırsız yol kat etmek zorunda kalacaklardı, ayrıca sınırsız büyüklükte bir küre olsaydı yıldızlar gökte bir doğru boyunca hareket ediyormuş gibi görünmeliydi; oysa Aristoteles’e göre yıldızlar doğudan batıya doğru çember çiziyordu. Bundan dolayı da doğrusal olan her hareketin bir sonu olacağını, ama çembersel hareketin bir sonu olmasının şart olmadığını, bu yüzden dairesel hareketin kusursuz hareket olduğunu düşünmüştür.

Batlamyus Evren Modeli

Batlamyus’un çalışmalarının temelleri Hipparchus’a dayanır, Batlamyus’un 1400 yıl hükümdarlık süren dünya merkezli evren modeli oluşturmasında çok büyük etkisi olmuştur. Batlamyus, Hipparchus’un 850 yıldız içeren yıldız kataloğunu 1022 yıldıza çıkarmıştır.

Bu arada gezegenlerle de ilgilenen Batlamyus, Aristoteles’in dönen kürelerinin, gezegenlerin hareketini ve parlaklıklarının değişiminin nedenini açıklamakta yeterli olmadığını fark etmiştir. Bu durumu düzeltmek için gezegenlerin Dünya etrafında dolanırken aynı zamanda da Dünya merkezli çember üzerinde dairesel bir hareket (epicycle) yapmaları gerektiğini düşünmüştür.

Böylece gezegenler Dünya’dan farklı uzaklıklarda bulunabilecekti ve buna bağlı olarak parlaklık değişimlerinin nedeni de anlaşılmış olacaktı, çünkü gezegen uzaklaştıkça parlaklık azalacak yaklaştıkça ise artacaktı. Aynı zamanda gezegenlerin farklı hızlarda hareket etmesi de açıklanmış oluyordu.

İyi bir matematikçi olan Batlamyus, ortaya koyduğu modelin gözlemlerle karşılaştırıldığında tam bir doğruluktan uzak olduğunu fark edip bu durumu düzeltmek için Dünya’yı merkezden biraz dışarı yerleştirmiştir. Günümüzde gezegenlerin yörünge düzlemlerinin elips olduğu bilinmektedir.

Batlamyus. Dünya’yı merkezinin dışına taşıyarak bir bakıma elipse yakın bir yörünge önermiş oluyordu. Batlamyus, yörüngelerin elips olduğunu kabul etseydi, modelinin daha basit ve gözlemlere daha uyumlu olacağını biliyordu ama inançları doğrultusunda hareket ettiğinden dolayı dairesel yörüngelerde ısrarcı davrandı.

Aristoteles, dairesel hareketin en kusursuz hareket olduğunu savunmuştur ve Batlamyus da bu geleneğin izinden gitmiştir. Rönesans’a kadar geçerliliğini korumuş kilisenin desteğini almış olan bu model Kopernik Devrimi ile son bulmuştur

Büyük Patlama Kuramı

Temelleri

Şiddetli Büyük Patlama Kuramı, Evren’imizin kökeni ve oluşumuna ilişkin yaygın kabul gören bir teoridir. Bu kuram, iki benzer sütun üzerine dayanmaktadır:

Genel Görelilik Kuramı: Seksen yılı aşkın bir süre önce, Einstein, Evren’de kütlenin dağılımının uzayın geometrisini nasıl belirlediğini betimleyen bu kuramı ileri sürmüştür. Başlangıçta, Kuram, Merkür’ün yörüngesindeki özellikleri ve Güneş’ten gelen ışığın kırılmasını izah etmekteydi. Son yıllarda, kuram bir dizi özenli testten geçmiştir.
Büyük ölçeklerde, maddenin Evren’de dağılımı hemen hemen yeknesaktır. Bu varsayım, hem galaksi incelemeleriyle hem de kozmik mikrodalga fon ışınımlarındaki dalgalanmaların düşük seviyesi ile teyit edilmiş gibi görünmektedir.
Şiddetli Büyük Patlama Kuramı’nda, gözlemlenebilir Evren, kabaca on ya da yirmi milyar yıl önce, aniden genişleyen bir nokta ile başlamıştır. O zamandan beri Evren, gittikçe Galaksimiz ve dış gezegenler arasındaki mesafeyi arttırarak genleşmeye devam etmiştir.
Evren’in genişlemesi, ışık ışınlarını mavi ışığı kırmızı ışığa ve kırmızı ışığı da kızılötesi ışığa dönüştürerek “uzatmaktadır”. Bu yüzden, hızla bizden uzaklaşmakta olan uzak galaksiler daha kırmızı görünürler. Bu genleşme aynı zamanda mikrodalga fon ışınımını da soğutur. Böylece, bugün 2,728 Kelvin’lik bir sıcaklığa sahip olan kozmik mikrodalga fon ışınımı ilk Evren’de daha sıcaktı.

Kütle çekimi Evren’in genleşmesini yavaşlatmaktadır. Eğer Evren yeterince yoğun ise, Evren’in genleşmesi sonunda tersine olacaktır ve Evren çökecektir. Eğer yoğunluk yeterince yüksek değilse, o zaman genleşme sonsuza dek devam edecektir. Bu yüzden, Evren’in yoğunluğu kendi nihai kaderini belirleyecektir.

Büyük Patlama Kuramı’nın Testleri

Şiddetli Büyük Patlama Kuramı çok sayıda önemli gözlem ile tutarlıdır:

Evren’in gözlemlenebilir genleşmesi,

Evren’in ilk üç dakikasında birincil olarak bireşimli olduğu düşünülen üç element olan helyum, döteryum ve lityumun gözlemlenebilir bolluğu,

Kozmik mikrodalga fon ışınımının termal (ısıl) tayfı,

Kozmik mikrodalga fon ışınımları uzak gaz bulutlarında daha sıcak görünmektedir. Işık sonlu bir hızla yol aldığından, biz bu uzak bulutları Evren’in tarihinde daha yoğun ve bu yüzden daha sıcak olduğu önceki bir zamanda görürüz.

Büyük Patlama Kuramının Ötesinde

Mevcut şekliyle, Büyük Patlama Kuramı tam değildir. Bu kuram;

Galaksilerin kaynağını ve galaksilerin gözlenebilir büyük ölçekli kümelenmelerini,

Maddenin çok büyük ölçeklerde yeknesak dağılımının kaynağını açıklamamaktadır.

Birçok Evren bilimci, Büyük Patlama Kuramı’nın bir uzantısı olan, Şişirme Kuramı’nın (Inflation Theory) bu soruları cevaplayabileceğinden şüphe etmektedirler

Çeyrek Kuvvet Kuramı

İster fare olun ister fil; vücut kütleniz sizinle ilgili her şeyi belirtiyor. Tarla faresi günlerden bir gün kırlarda koşup oynarken, derinliği bin metreyi bulan bir maden kuyusuna düşer. Kuyunun dibi yumuşak toprakla kaplı olduğu için ölmez; yalnızca düşmenin şokundan biraz sersemler; kendine gelir gelmez de bir delik bularak gözden kaybolur.

Aynı yükseklikten düşen sıçan ölür; insan paramparça olur; at büyük bir gürültüyle ortalığı toza dumana katarak yere çarpar ve düştüğü yerde kalır. Bundan çıkartılacak mesaj çok basittir: Biyolojide önemli olan boyuttur; her şeyi boyut belirler.

Yerçekiminin gücü boyutlar büyüdükçe artmaz. Hayvanlar aleminde boyut, fizyolojik, anatomik, davranışsal ve ekolojik açıdan çok önemlidir. İri hayvanlar küçük hayvanların birebir büyütülmüş şekli değildir; vücüt kütlesi arttıkça kemikler oransal olarak kısalır ve kalınlaşır, metabolizma yavaşlar, kalp atışları azalır, ömür uzar, olgunluğa daha geç ulaşılır, yavru sayısı düşer, nüfus yoğunluğu azalır, yaşam alanının metrakaresi büyür.

Fillerin farenin 200,000 kat büyümüş hali olmadığını öğrenmek kimseye ters gelmez. Ancak canlı türlerinde vücut kütlesi ile yaşam şekli arasında mükemmel bir matematiksel ilişki olduğunu öğrenmek pek çok kişiye şaşırtıcı gelebilir. Yıllardır biyologlar bu konu üzerinde kafa patlatıyor. İçinde bulunduğumuz günlerde iki çevre uzmanı ve yüksek- enerji fizikçisinden oluşan üç kişilik bir araştırma grubu bu ilginç biyolojik olguya açıklama getirdiklerine inanıyor. Bunlara göre yanıt, bitki ve hayvanlardaki besin dağılımının fiziği ve geometrisinde yatıyor.

Ayrıca bu bulgular doğanın bir mucizesine daha ışık tutuyor. Evrimin, Uzay’ın dördüncü boyutuna kadar uzandığını ileri süren bu üç araştırmacı, türlerin bu dördüncü boyuttan yararlanarak dünya nimetlerinden daha fazla pay aldıklarını söylüyor.

Evrim, çok uzun süredir biyologların deyimiyle ”çeyrek-kuvvet ölçeği” yasasından yararlanıyor. Bu, şu anlama geliyor: pek çok biyolojik değişken, çeyrek veya üç çeyrek oranında büyütülmüş vücut kütlesine bağlı olarak azalma veya çoğalma eğilimi gösterir. Örneğin uzun ömür, bir çeyrek kuvvetine yükseltilmiş vücut kütlesine doğru orantılı olarak artar.

Çeyrek-kuvvet ölçeği biyolojinin en temel kurallarından biridir; ancak yaygın olduğu oranda da şaşırtıcıdır. New Mexico’da Los Alamos Ulusal Laboratuvarın’ndan fizikçi Geoffrey West, söz konusu üç bilim adamından biri. West şöyle konuşuyor:”Böyle bir durumla karşılaştığınız zaman bunun size bir şeyler anlatmaya çalıştığını fark edeceksiniz”diyor. Burada önemli olan ”Bu bir şeylerin neyi anlatmaya çalıştığı?”

Albuquerque New Mexico Üniversitesi’nden Brian Enquist ve Jim Brown söz konusu üçlünün diğer ikisi. Üçü de sorunun yanıtının ünlü çeyrek-kuvvet ölçeği yasasında aranması gerektiğini söylüyor. Öncelikle canlının vücut oranı ile metabolik hızı arasındaki ilişkiye bir göz atmak gerektiğine dikkat çekiyorlar.

Türlerin vücut kütlesi büyüdükçe metobolizma hızının azalması kuralından yola çıkarsak, türlerin büyüdükçe enerjiyi daha verimli bir şekilde kullandığı anlaşılıyor.

West’in son yıllarda çalışmalarına katıldığı Los Alamos Laboratuvarı’ndan biyokimyacı William Wooddruff, çeyrek-kuvvet yasasının tek hücreli yaratıklarda bile geçerli olduğunu belirtiyor.

Yalnızca basit geometrik bilgilerden yararlanarak, küçük hayvanlardaki metabolik hızın, büyük hayvanlardaki hıza erişmeyeceği sonucunu çıkartmak mümkün. Organizmanın boyutları büyüdükçe, geometrisindeki iki özellik değişikliğe uğrar. Yüzey alanı iki boyut üzerinden büyürken, hacmi üç boyut üzerinden değişir.

Organizma, metabolizmanın ürettiği fazla ısıdan kurtulmak için yüzey alanlarından yararlanır. Dolayısıyla metabolizmanın hızı, küçük- büyük farkı gözetmeksizin tüm hayvanlarda aynı kaldığı takdirde, organizmada işlevsel bozukluklar ortaya çıkar.

Örneğin, kedi büyüklüğündeki bir farenin metabolik hızı kütlesine orantılı olarak değişirse, normal büyüklükteki bir fareden yüz misli daha fazla ısı üretmesi gerekir. Ancak farenin yüzey alanı fazla ısıdan kurtulmak için ancak 22 misli büyür. Sonuçta ortaya sımsıcak bir fare çıkar. Daha büyük türlerde aşırı ısınma sorunundan kurtulmak için metabolik hızın daha düşük olması gerekir.

Basit geometrik kuralların geçerli olduğu durumlarda, vücut kütlesi ile metabolizma hızı arasındaki ilişki ikide üç çarpanında olmalıdır. 1930′lu yıllarda bu ilişkiyi ilk kez ortaya çıkartan Amerikalı bilim adamı Max Kleiber, bu çarpanın ikide üç değil, üç çeyrek kuvvetinde olduğunu ileri sürüyordu. Brown bu konuda doğanın geometriden daha becerikli ve daha akıllı olduğunu ileri sürüyor.

Bitkilerde Durum

Brown, uzun yıllardır çalışmalarını ölçek ve enerji akışı arasındaki ilişki konusunda yoğunlaştırıyor. Enquist’in de aralarına katılmasıyla 1990′larda çalışmalarına bitkileri de dahil etti. O güne dek Kleiber’ın kurallarının bitkileri de kapsayıp kapsamadığı bilinmiyordu. ”Organizmanın enerji kaynaklarını gövdenin en uç noktasına nasıl taşıdığı konusu yaşamsal önem taşıyor”diye konuşan Enquist, ”Hayvanlarda olduğu gibi, tüm bitkilerin tek bir sorunu vardır. O da dokularını en mükemmel şekilde nasıl besleyecekleri konusudur” diyor.

Enquist, bitkiler üzerinde sürdürdüğü birkaç haftalık çalışmasının sonucunda şu bilgilere ulaştı: ”Metabolik hız ile kütle arasında 0.733 gibi ilişki oranı buldum. Bu da hayvanlarda olduğu gibi üç çeyrek kuvvet kuramının bitkilerde de geçerli olduğunu gösteren önemli bir kanıttı.”

Enquist, bunun üzerine organizmalarda kaynak dağılımı konusuna ağırlık verdi. Çok hücreli organizmalar besinleri vücutlarında dolaştırmak için dallara ayrılmış boru şeklindeki şebekeden yararlanır. Bitkilerde bu yapısal özellik damar sistemi olarak ortaya çıkarken, böceklerde trakeal (soluk borusu) dağılım şebekesi, omurgalılarda kan damarları olarak kendini belli eder. Bilim adamları Kleiber Yasası’nı işte bu şebekenin hidrodinamiği üzerinde kanıtlamaya çalışıyor.

Kalp atışlarının vücut kütlesine oranla bir çeyrek oranında azaldığı gerçeğini kabul eden West, küçük veya büyük, tüm hayvanlarda yaşamları boyunca kalp atış sayısının sabit olduğunu keşfetti. West’e göre kalp atış sayısı canlı türünün ait olduğu gruba göre değişiklik gösteriyor. Örneğin memelilerde bu sayı 1.5 milyar civarında.

Bu arada tüm organizmaların ortak noktası olan dağıtım şebekesinin evrensel özellikleri tespit edildi. Üç ana maddede özetlenen bu unsurlar şöyle sıralanıyor. İlk maddeye göre dağıtım şebekesi vücudun her noktasına ulaşmak zorunda; çünkü yeterince beslenemeyen doku ölür.

Beslenme şebekesindeki en ince borunun çapı türden türe değişiklik gösterirken, aynı türdeki organizmalarda çapın sabit kaldığı gözlenir. Bu ikinci özelliktir. Üçüncü özellik ise evrimin, sıvı şebeke içinde dolaşırken enerji kaybını en aza indirgemesidir.

Gizemli Düzen

Enquist, doğada izlenen bu mükemmel düzeni şöyle yorumluyor: ”Çeyrek kuvvet ölçek yasasının temeli matematiğe dayanır. Bu matematiksel modele göre organizmaların besin dağılım tablosu kesirli bir yapıya sahiptir. Kesirli bir yapıya sahip olan bu şebekenin gizi, organizmanın en ücra köşesine en verimli şekilde besin taşımasında yatmaktadır.”

Bu model, yalnızca memelilere özgüymüş gibi sunulmakla birlikte genel olarak diğer hayvanlara ve bitkilere de uygulanabilir. Ancak “Çeyrek Kuvvet Ölçeği Yasası” tek hücreliler kadar, çok hücrelileri de kapsadığı için, enerji nakli sisteminde kesirli bir yön bulunması olasılığı artar.

Biyologlar hücrede enerjinin nasıl üretildiğine ilişkin bilgiye sahip olmakla birlikte, bu enerjinin nasıl taşındığına ilişkin yeterli bilgileri yoktur. Şimdilik yalnızca mitokondriyalardaki enerji nakli konusunda bir şeyler bilen bilim adamları, enerji dağılımını sağlayan şebekeler konusunda yoğun incelemeler yapılması gerektiğine inanıyor.

Kesin olduğuna inandıkları tek nokta ölçekleme kuralının biyo- farklılığı doğurduğu. Başka bir deyimle, metabolik hızın tüm canlılarda aynı olması durumunda, vücut kütlesinin değişmesi son derece çarpık bir biyo-farklılık yaratabilirdi.

Dördüncü Boyut

Sonuçta, üçte-iki kuvvet ölçeğinin varlığı yaşamın dördüncü boyutunun kullanılmasına zemin hazırlıyor. Bu boyutun çalışma şekli şöyle: Doğal seleksiyon, türün enerji verimini en üst dereceye ulaştırıyor. Bu da şebekenin terminal tüplerinin (omurgalılarda kılcal damarlar) yüzey alanını çıkabileceği en üst dereceye vardırıyor.

Terminal tüplerin vücut kütlesiyle aynı oranda artmadığına dikkat çeken West, terminal tüplerinin vücut kütlesinden bağımsız olarak aynı kalmasının, doğal seleksiyonun dördüncü boyutu yaratmasına yol açtığına dikkat çekiyor.

Dolayısıyla organizmalar iki farklı uzaysal dünyaya sahip oluyorlar. Hepimiz üç boyutlu bir dünyada yaşıyoruz. Bu üç boyutlu dünya ile doğrudan temasta bulunan deri, vücut kütlesi arttıkça üçte iki oranında artış göstererek bu üç boyutlu dünyanın kurallarına mükemmel uyum sağlıyor.

West, işte bu noktada dördüncü boyutun ortaya çıktığını söylüyor: ”Bizim içsel anatomimiz ve fizyolojimiz, yani gerçek halimiz dört boyutlu bir dünyada yaşamaktadır. Dört boyutlu dünya yaşam süremizi, olgunluk yaşını, nüfus yoğunluğunu belirliyor. Çünkü sonuçta sistemin dinamiğini enerji kullanımı belirliyor. Sistemin tek bir organizma veya ekosistem olması bu gerçeği değiştirmez.”

Einstein Kuramları

Sicim (Tel) Kuramı Einstein’ın düşünü gerçekleştirebilir: 20. yüzyıl fiziğinin iki karşıt görüşünü bir araya getiren “Büyük Birleşik Kuramı” oluşturmak.

“Beni, yılların kör ve sağır hale getirdiği taş kesmiş bir nesne gibi görüyorlar” diye yakınıyordu Einstein, yaşamının son yıllarında. Ne yazık ki haklıydı. Einstein, yaşamının son otuz yılını “Birleşik Alan Kuramı ” nı üretme hayaliyle geçirdi. Bu kuramın denklemleri, birbirleriyle ilişkisiz gibi görünen elektromanyetizma ile kütleçekimi kuvvetleri arasında bir bağ kuracaktı.

Einstein, böylece iki karşıt evren görüşünü uzlaştırmayı umuyordu: “Genel Görelilik İlkeleri” nin tanımladığı (üzerinde yıldızların ve gezegenlerin hüküm sürdüğü) sorun çıkarmayan “sürekli” bir zaman-mekân alanı ile parçacıkların egemenliğindeki, uzlaşmaya yanaşmayan olağanüstü küçük ölçekli kuantum dünyası.

Einstein, bu konu üzerinde çok çalıştı, ancak başarıya ulaşamadı. Fizikçi meslektaşları hiç de şaşırmıyordu. Çünkü eskide kalmış bir bakış açısından yararlandığı için onun zaten boşa kürek çektiğini düşünüyorlardı.

Einstein tüm diğer fizikçilerin aksine, “Birleşik Alan Kuramı” nı oluşturmaktaki temel sorunu, Görelilik İlkelerinin değil, Kuantum Mekaniği’nin yarattığına inanıyordu. 1954 yılında fikrini şöyle dile getiriyordu: “Kuantum belası ile karşılaşmamak için başını görelilik kumuna gömen bir devekuşu gibi görünüyor olmalıyım”.

Ne var ki bugün, asıl sorunun Einstein’ın kuramından kaynaklandığını biliyoruz. Olağanüstü küçük ölçeklerde, Einstein’ın zaman ile mekânı (dolayısıyla gerçeklik) büyütecin altında süreksiz ve nokta nokta hale gelen, gazetedeki bir fotoğraf gibi oluyor.

Genel Görelilik Denklemleri, nedensellik ilkesinin yokolduğu ve bir parçacığın A noktasından B noktasına mekânda (Uzay’da) yolalmaksızın ulaştığı böyle bir ortamda işe yaramıyor. Böyle bir dünyada, gelecekteki olay ancak belli bir olasılığa dayanıyor; Kuantum Kuramı da bu olgu üzerine kurulu.

Einstein, kozmosun temelindeki yasaların bir kumar oyunu gibi düzenlediğini asla kabul etmedi. Bu yüzden de Birleşik Alan Kuramı’na ilişkin yazdığı makaleler ilkel kalmaya mahkûmdu. Ancak makaleler, fiziğin en temel problemine çözüm arıyordu. Bu problemin önemini kavramak konusunda Einstein, öylesine ileri görüşlüydü ki, fizik bilimi ancak bugünlerde ona yetişmeye başladı.

Yeni nesil bir grup fizikçi nihayet her şeyi (Einstein’ın deyişiyle “fiziksel gerçekliğin tüm öğelerini”) açıklayabilecek “Büyük Birleşik Kuramı” yaratma mücadelesine girdi. Bugün geldikleri noktaya bakılırsa, önümüzdeki yüzyılda, Einstein’ın 1900′lerin başlarında önderlik ettiğinden çok daha heyecan verici bir entelektüel devrime tanık olacağız.

Sicim Kuramı

Aslında bazı kuramsal fizikçiler kütleçekimini doğanın diğer temel kuvvetleriyle bütünleştirmeye yarayacak (en azından böyle görünen) kuramsal çerçeveyi oluşturmak konusunda ilk adımı attılar bile. Bu çerçeve popüler adıyla Sicim (Tel) Kuramı olarak biliniyor.

Sicim (Tel) Kuramı, Evren’i oluşturan en temel, bölünemeyecek kadar küçük bileşenlerin nokta gibi parçacıklardan değil, titreşen minyatür keman tellerine benzeyen sonsuz küçük (infinitezimal) döngülerden oluştuğunu öne sürer. “Sicim Kuramı ” nın öncüsü, İleri Araştırmalar Enstitüsü’nden Edward Witten, bu kuram için “20′inci yüzyılda tesadüfen bulunan bir 21. yüzyıl yapıtı” diyor.

Ancak asıl dert (gelmiş geçmiş en zor bilmeceyi çözene kadar) daha kaç tane farklı şeyle karşılaşacağımızı, ne Witten’in ne de bir başkasının bilememesi.

Columbia Üniversitesi’nden fizikçi Brian Greene’e göre sorunun temel nedeni, kuram oluşturulurken sondan başa doğru bir yol izlenmek zorunda olunması: “Fizikçiler çoğu kuramı oluşturmak için öncelikle her şeyi kapsayan genel bir düşünce yaratır, ardından bunu denklemlerle ifade eder” Greene, “Oysa biz halâ neyin ‘gerçek’olduğunu anlamaya çalışmakla meşguluz” diyor.

Kuantum Köpüğü

Sicim (Tel) Kuramı’na duyulan heves yıllar boyu sürekli değişkenlik gösterdi. 1970′li yıllarda oldukça ilgi görüyordu, ancak daha sonra birçok fizikçi Sicim Kuramı üzerinde çalışmayı bıraktı. Oysa Caltech’ten kuramsal fizikçi John Schwartzve Ecole Normale Superieure’deki meslektaşı Joel Scherkazimle çalışmayı sürdürüp, 1974 yılında sabırlarının karşılığını aldılar.

Geliştirdikleri denklemlerin umdukları türden parçacıkları değil, titreşen telleri (sicimleri) temsil ettiğinin zaten bir süredir farkındaydılar. İlk başta bu matematiksel hayaletlerin bir sorundan kaynaklandığını düşündüler. Ancak daha yakından incelediklerinde bu hayaletlerin graviton adlı (kütleçekimini taşıyan ve halâ kuramsal olan) parçacıklar olduğuna karar verdiler.

Parçacıkların yerine sicimleri (telleri) kullanmak, Genel Görelilik İlkeleri’yle Kuantum Mekaniği’ni bütünleştirmeye çalışan bilim adamlarını bezdiren problemlerin en azından bir tanesini çözdü. İşin böylesine zor olması, atomaltı ölçeklerde Uzay’ın (mekânın) sürekliliğini kaybetmesinden kaynaklanıyor.

Mesafeler inanılmaz ölçüde kısa olduğunda Uzay, sürekliliğini yitirir ve fokurdamaya başlar (Bazıları bu olguya Kuantum Köpüğü adını verir). Nokta gibi parçacıklar (gravitonlar da dahil) Kuantum Köpüğü’nde (okyanuslardaki büyük dalgalarla sürekli sallanan bir sal gibi) gelişigüzel savrulur. Oysa sicimler, birkaç dalgayı kaplayacak büyüklükleriyle bu tür rahatsızlıkları yaşamadan “okyanusta” yol alan minyatür gemiler gibidir.

Doğa, karşılığında bir bedel ödetmeden bilim adamlarını neredeyse hiçbir zaman ödüllendirmez. Bu ödül için ödenecek bedel ise olağanüstü karmaşık olan bir problemin üstesinden gelmek. SiciM Kuramı, bildiğimiz dört boyuta (yükseklik, genişlik, uzunluk ve zaman) yedi boyut daha eklemeyi zorunlu kılıyor.

Ayrıca tamamen yeni bir atomaltı parçacık sınıfına (süpersimetrik parçacıklara) ihtiyacımız var. Üstelik bir değil, tam beş tane farklı Sicim Kuramı var. Bilim adamları bu kuramların hiçbirinden vazgeçemeseler de, hepsinin aynı anda doğru olması olanaksız görünüyordu.

Ancak işin gerçekten de böyle olduğu ortaya çıktı.1995 yılında (yaşayan belki de en büyük fizikçi olan) Witten, tüm bu süpersimetrik Sicim Kuramlarının çok daha genel bir kuramın farklı öngörülerine karşılık geldiğini açıkladı. Yeni, daha kapsamlı olan kurama M Kuramı adını verdi.

Bu farklı bakış açısı meslektaşlarına güç verdi ve bir sürü araştırmaya esin kaynağı oldu; araştırmalar sayesinde bugün birçok bilim adamı Sicim Kuramı ‘nın doğru iz üzerinde olduğuna inanıyor. Kara Delik ve Genel Görelilik konularında uzman olan Caltech’ten Kip Thorne “Doğruluğun kokusunu alıyorum ve bunu hissediyorum” diyor ve ekliyor: “Bir kuramı geliştirmenin ilk aşamasında sezgilerinizi ve hislerinizi kullanmak zorundasınız”

M Kuramı : Büyük Birleşik Kuramı mı?

Witten, M Kuramı’ndaki M harfinin çok şeyi ifade ettiğini söylüyor: Matrix (“kalıp”, bir cisme şekil veren şey), mystery (gizem) ve magic (sihir).

Ancak şimdi listesine murky’i de (bulanık, anlaşılması güç) ekledi. Neden mi? Çünkü Witten bile M Kuramı’nın tam anlamıyla ne olduğunu ifade eden tüm matematiksel denklemleri oluşturamıyor.

Witten, M Kuramı’nın (öngörü yeteneğine sahip) tam bir kuram haline gelebilmesi için onlarca yıl geçebileceğini düşünüyor. “Bu tıpkı dağlarda yürüyüş yapmak gibi birşey” diyor

Witten düşüncelere dalarak, “Bir geçidin zirvesine ulaştığınızda yepyeni bir manzarayla karşılaşıyorsunuz. Manzarının tadını çıkartıyorsunuz, ancak çok geçmeden acı gerçek ortaya çıkıyor: Henüz asıl varmak istediğiniz noktadan çok uzaktasınız”.

11 Boyutlu Bir Dünya

Einstein bir dahiydi elbet, ancak çok şanslıydı da. Genel Görelilik Kuramı’nı geliştirirken, yalnızca üç uzaysal boyutu ve bir de zaman boyutu olan bir dünyada çalışıyordu. Sonuçta kendi denklemlerini üretmek ve çözmek için aşırı karmaşık bir matematik kullanmak zorunda değildi.

M Kuramı ile uğraşanlar ise “zar (brane)” adı verilen tuhaf parçacıklarla dolu 11 boyutlu bir dünyada çalışmak zorunda. Bu terminolojide sicim, tek boyutlu “zarlara (brane)”, membranlar (membrane) ise iki boyutlu zarlara (brane) karşılık geliyor. Daha fazla boyutlu “zarlar” bulunsa da henüz Witten bile bunlarla nasıl başa çıkacağını bilemiyor. Bu “zarlar” bükülüp katlanarak, üzerinde çalışanları çileden çıkaran bir sürü garip biçime bürünüyor.

Gelecek Umut Dolu

Öyleyse bu garip şekillerden hangileri Evren’in temel yapılarını oluşturuyor? Sicim Kuramı’yla uğraşan teorisyenlerin bu konuda henüz hiçbir ipuçları yok. M Kuramı’nın dünyası öylesine alışılmadık ki, bilim adamları aynı anda hem fizik hem de matematik cephesinde savaşmak zorunda kalıyor.

Belki de Isaac Newton’ın hareket yasalarını oluşturabilmek için diferansiyel ve integral hesabını geliştirdiği gibi, onlar da yeni hesap yöntemleri geliştirmek zorunda kalacak. Üstelik Sicim Kuramı’nın, Kuantum Mekaniği’ndeki gibi deneysel kanıtları da yok.

Önümüzdeki 10 yıl içinde bu durum değişebilir. ABD ve Avrupa’daki dev parçacık çarpıştırıcılarında yapılacak deneyler sonucunda süpersimetriye ilişkin doğrudan kanıtlar ortaya çıkabilir. Bu deneyler, belki de farklı boyutların varlığını da kanıtlayacak. Acaba Einstein böyle çılgın fikirlerin olduğu bir çağda yaşasaydı ne düşünürdü?

Columbia Üniversitesi’nden Greene “Einstein buna bayılırdı” diyor. Greene’e göre, eğer genç Einstein, profesyonel kariyerine 1900′lü yıllarda değil de bugün başlasaydı, Kuantum Mekaniği’ne duyduğu güvensizliği yenerdi. Ayrıca zarları, süpersimetrik parçacıkları ve süpersicimleri benimserdi.

Hatta, geleneksel düşünme tarzını aşmak ve dünyayı hiç alışılmadık yönleriyle algılamak konularında böyle insanüstü bir yeteneği olduktan sonra, Büyük Birleşik Kuramı yaratan kişi de o olabilirdi. Einstein’ın “bitmemiş entelektüel senfonisini” tamamlamak için belki de bir “Einstein” daha gerekecek.

Eylemsizlik Prensibi

Eğer maddesel bir noktanın yeri mutlak bir koordinat eksenler sistemine göre tarif edilirse ve bu maddesel nokta dışarıdan başka cisimlerin etkisi altında bulunmuyorsa bu nokta ivmesiz olarak hareket edecektir; yani ya yani ya hareketsiz duracak veya bir doğru üzerinde sabit bir hızla hareket edecektir.

Newton’un bu ifadesi şöyle açıklanabilir: Bir kuvvetin uygulanmasıyla durumunu değişmeye mecbur edilmediği takdirde, her cisim bulunduğu hareketsiz halinde veya düzgün hareket halinde kalır.Yani daha açık söylemek gerekirse: Hareketsiz halde duran ya da sabit bir hızla hareket etmekte olan bir cisme, herhangi bir başka kuvvet uygulanmadığı sürece bu durağan halini ya da sabit hızlı halini korur.(Otobüs birden durduğunda yolcuların birden öne doğru savrulduklarına dikkat etmişsinizdir. Savrulmanın nedeni, yolcuların durma anından önceki sabit hızlı hareketlerini sürdürmeleridir.)

Bütün deneylerimiz gösterir ki; nerede ve ne zaman bir ivme meydana gelirse, bu ivme iki sebebin yalnız birinden veya her ikisinden dolayı meydana gelir. Bu ivme, kullanılan sistemin mutlak bir eksenler sistemi olmadığından veya başka cisimlerin etkisinden veya her iki sebepten ötürü olabilir. Başka bir sebep mümkün değildir.

Bu iki sebebin mevcut olmaması halinde, maddesel noktanın ivmesi bulunmayacağı hakikati, bazen her noktanın eylemsizliği vardır sözü ile ifade edilir ve bu sebepten mutlak bir eksenler sistemine eylemsiz sistem denir.

Kanunun kendisi, eylemsiz bir sisteminin anlamını genişletmemize imkan verir. Dolayısıyla, herhangi bir S1 eksenler sistemi mutlak bir eksenler sistemine göre ivmesiz olarak hareket ediyorsa, bir P maddesel noktasının S1 sistemine göre ivmesi mutlak bir sisteme göre ivmesinin aynı olacaktır; yani S1 de eylemsiz bir sistem olacaktır. Böylece birinci kanun doğru ise, yukarıda sözü geçen S sistemi çok büyük bir ihtimalle eylemsiz bir sistemdir.

Birinci hareket kanunu, eğer P maddesel noktası başka bir cisim veya cisimlerin etkisi altında kalıyorsa ve bu etkiler birbirini yok etmiyorlarsa, P’nin eylemsiz bir eksenler sistemine göre hareketine ivme verilmiş olacaktır. Başka cisimlerin etkisi altında kaldığı zaman P maddesel noktası kuvvet etkisi altındadır denir. Birinci kanuna göre, bu takdirde , kuvvet sadece ivme ortaya çıkaran bir şeydir. Bu ancak başka cisimler tarafından uygulanır ve ortaya çıkardığı ivme ile ölçülür. Biz kuvvetleri verilen bir veya başka başka (fakat belli) maddesel noktalar üzerinde meydana getirdikleri ivmeleriyle karşılaştırabiliriz

Genel Görelilik Kuramı

Genel Görelilik Kuramı Einstein’ın en büyük başarısı idi; klasik, deterministik dünya görüşünün gününü dolduruşunu temsil ediyordu. Einstein, uzay, zaman ve madde fikirlerini modern biçimlerine getirerek Newton fiziğinin ötesine giderken, fiziğin çerçevesi tamamen deterministik idi. Newton evreninin büyük saati Einstein tarafından değiştirilmişti -çarklar ve bölümler farklıydı- fakat, Einstein saatin hareketinin hala sonsuz geçmiş ve gelecekte tamamen önceden belirli olduğu konusunda Newton ile anlaşıyordu.

Genel Görelilik Kuramı Nasıl Geliştirildi?

Genel Görelilik Kuramı’nı bir tek kişinin yaratmış olduğuna inanmak zordur. Kuram, uzay, zaman, enerji, madde ve geometriyi muazzam bir ufku ve anlamı olan uyumlu bir bütün halinde birleştirmektedir.

Einstein, Zürih’te iken ve Berlin’deki ilk yıllarında, fizikte pozitivizmin büyük savunucusu olan filozof fizikçi Ernst Mach’ın entellektüel etkisi altında kalmıştı.

Mach, kuramsal fizikçilerin, fizikte deneysel işlemlerle kesin, doğrudan bir anlam kazandırılamayan herhangi bir fikir kullanmamaları gerektiğini düşünüyordu. Deneysel dünyayla ilgisi olmayan fikirler, fiziksel kuram için yüzeysel olarak değerlendiriliyordu. Mach’ın yöntemi yeni fiziğin gelişiminde önder bir kuvvet oldu.

Einstein, bu yöntemin ustasıydı. Einstein’ın uzay ve zaman tanımlarını hatırlayın: uzay bir ölçü çubuğu ile ölçtüğümüz şeydir. Ölçme işine doğrudan başvuran bu tanımlar, uzay ve zaman kavramlarının yüzyıllardır taşımış oldukları tüm aşırı felsefi bagajı kesip attılar. Pozitivist, yalnızca, ölçme gibi doğrudan işlemler yoluyla bildiğimiz şeylerden söz etmekte ısrar eder. Fiziksel gerçeklik, kafalarımızdaki fantezilerle değil, fiili deneysel işlemlerle tanımlanır.

Ancak Einstein, Berlin’e yerleştikten sonra, katı pozitivist tutumdan uzaklaştı ve bu durum, kısmen, iş arkadaşı Planck’ın ikna edici tezlerinin sonucunda oldu. Aynı zamanda Einstein’in Genel Görelilik Kuramı konusundaki başarısı ve ona ulaşmak için kullanmış olduğu düşünce yöntemi, onu katı pozitivist yöntemin sınırlılıkları konusunda ikna etti.

Einstein bir pozitivist olarak kalmış olsaydı, genel Görelilik Kuramı’nı keşfetmiş olup olmayacağı şüphelidir. Einstein daha sonra, kendisinin Berlin’de patent ofisinde çalıştığı günlerden arkadaşı olan filozof Maurice Solovine’e yazdığı bir mektupta, kendi yöntemini anlattı. Bu yöntem Einstein’ın önerme yöntemi olarak isimlendirilebilir.

Genişleyen Evren’in Gözlenmesi

Einstein, genel Görelilik Kuramı’nı, Evren’in bütününe uyguladı. Sonlu ve sınırsız bir Evren modeli kurdu ve bunun matematiksel yapısını geliştirdi. Amerikalı astronom Edwin Powell Hubble (1889-1953), 1920′li yıllarda Evren’in yaşı, oluşumu ve dağılımı konusunda çalışmaları başlatan bilim adamı.

Hubble, 1929′da yaptığı gözlemlerle uzak gökadalarının ışığının kırmızıya kaydığını, buradan kalkarak da bunların Dünya’dan uzaklaştığını ortaya koydu. Evren genişliyordu. Oysa Einstein’in evreni durağandı.

Kuram, büyük kütlelerin yakınından geçen ışık ışınlarının kütleçekim alanının etkisiyle eğileceğini, bu nedenle de uzak bir yıldızın ışığının Güneş’in kenarından geçerken yapacağı sapmanın hesaplanabileceğini öngörüyordu. Birinci Dünya Savaşı ve kötü hava koşulları, ilk gözlemin yapılmasını engelledi. Kuram’ın ilk genel kanıtları iki İngiliz bilim adamından geldi: 29 Mayıs 1919′da Güney Afrika’da (Gine Körfezi’ndeki bir adada) ve Brezilya’da gözlenen Güneş tutulmaları sırasında elde edildi.

Sonuçlar tam Genel Görelilik Kuramı’nı kanıtlayacakken, iki ayrı yerin sonuçları birbirine ters düşüyordu. Daha sonraları da gözlemler ve deneyler, onu doğrulamaya devam etti. 1922′de Güney Afrika ve Brezilya’dan alınan verilerin farklı souçlar vermesi üzerine Lick Gözlemevi’nin yöneticisi William W. Campbell, bir sonraki tutulmayı izlemek için Avustralya’ya gitti.

Tutulma, yaklaşık beş dakika izlenebildiği için “Naif yıldızlarda kaydedilebilecek; böylece Güneş’e yakın gözlenebilir yıldızların sayısı artacaktı” diye açıklama yapıyor Osterbrook ve “gözlem yapanlar ‘etkiyi ölçmek için daha iyi bir şans’elde edecekler” diyor.

12 Nisan 1923′te, Campbell, yıldızların görüntülerinin yerleşimleri iki durum için, yani tutulma ve gerçek gece durumundaki yıldızların farklılık gösterdiğini keşfetti. ” Einstein’in tahminleriyle karşılaştırıldığında Güneş kenarındaki yıldız ışıkları 1.75 saniyelik bir açıyla saptırılıyor olması, verilen Görelilik Kuramı’na yaklaşabildiğinin bir kanıtıdır” diyordu.

Garip ama, Campbell, kendisini göreli bir Evren’de bulmak istemiyordu. “Tanrım umarım doğru değildir” diyordu. Einstein, tabii ki, göreliliği Evren’in normu olarak görüyordu. Doğrusu Kuram’ın doğruluğu kanıtlandığında “Ama ben zaten Kuram’ın doğru olduğunu biliyordum” diyecekti öğrencisi Schneider’a.

Schneider, Einstein’”eğer tutulmalar, Kuram’ı doğrulamasaydı ne olurdu” diye sorduğunda Einstein ” O zaman Tanrı’dan özür dileyerek, Kuram doğru derdim” diyordu.

Genel Görelilik ve Evren Modelleri

Roger Penrose: “Sizlere Einstein’in kütleçekim kuramının temel yapıtaşlarını hatırlatmak istiyorum. Temel yapıtaşlarından birisi Galilei’nin Eşdeğerlik İlkesi adıyla bilinir. Galilei Piza Kulesi’nin tepesinden biri büyük biri küçük iki taş bırakıyor. Bu deneyi gerçekten gerçekleştirmiş olsa da olmasa da, kendisi, hava direncinin yarattığı etkiyi görmezden gelmek koşuluyla, her iki taşın da yere aynı anda çarpması gerektiğini gayet iyi anlamıştı.

Eğer bu taşlar beraberce aşağı doğru düşerlerken bir tanesinin üstüne oturup diğerini seyretme imkanınız olsaydı, onu önünüzde, havada asılı bir halde dururken görecektiniz. Uzay seyahatlerinin yapıldığı günümüzde buna benzer durumlara fazlasıyla alışığız.

Einstein’in Kuramı, bize yerçekimin ortadan kalktığını değil, yerçekimi kuvvetinin ortadan kalktığını söylemektedir. Geriye bir tek şey kalıyor, o da kütle çekiminin yarattığı gelgit etkisi.

Bu etkiye gel git etkisi denmesinin çok makul bir nedeni vardır. Eğer Yerküre’yi Ay’la, parçacıklardan oluşan küre biçimindeki kabuğu da, okyanusların kapladığı Yerküre ile değiştirecek olursanız, o zaman, Ay’ın okyanusların yüzeyi üzerinde Yerküre’nin parçacıklardan oluşan küresel kabuğa uyguladığı etkiye benzer bir kütleçekim etkisi yarattığını görüyoruz.

Ay’a yakın konumda bulunan deniz yüzeyi, Ay’a doğru çekilirken, Yerküre’nin arka yüzünde kalan denizler adeta uzağa doğru itilirler. Deniz yüzeyinin Yerküre’nin her iki tarafında bel vermesinden ve denizde her gün iki kez oluan yükselmeden bu etki sorumludur.

Einstein’in Genel Görelilik Kuramı’nı keşfinin öyküsü, kıssadan hisse önemli bir ders içermektedir. Bir bütün halinde ilk formülleştirildiği tarih 1915′tir. Herhangi bir gözlemsel ihtiyaç sonucunda değil, birtakım estetik geometrik ve fiziksel kaygıların güdüsüyle geliştirilmişti. Temel yapıtaşlarını, farklı kütlelere sahip taş parçalarının aşağı bırakılması nedeniyle örneklenen Galilei’nin Eşdeğerlik İlkesi ve uzay-zaman eğriliğini tanımlamada doğal bir yol olan Öklit-dışı geometrilerin kendine esas aldığı fikirler oluşturmaktaydı. 1915′lerde yapılan gözlemsel çalışmaların bu konuyla pek bir ilgisi yoktu.

Genel Göreliliğin Öngörüleri ve Test Edilmeleri

Genel Görelilik, son biçimi ile formülleştirildiğinde, Kuram’ın kilit noktasında gözleme dayalı üç adet sınamaya yer verdiği görüldü.

Birincisi: Merkür Gezegeni’nin yörüngesinin günberi noktası yer değiştirmekte ve diğer gezegenlerin etkileri hesaba katılsa dahi, Newtoncu kütleçekim etkileşimleri ile açıklanamayan bir dönüş hareketi yapmaktadır. Genel Görelilik, bu kaymayı olağanüstü bir şekilde öngörmekte ve açıklamaktadır.

İkincisi: Işık ışınlarının izledikleri yollar, Güneş’e yaklaştıkça Güneş’e doğru eğrilir (bükülür). Bu da 1919′daki Güneş tutulmasını gözlemlemek amacıyla Arthur Eddington’un başkanlığında gerçekleştirilen ünlü yolculuğun gerçekleştirilme sebebidir. Eddington, yaptığı gözlemler sonunda Einstein’in öngörüsünü destekleyen sonuçlar elde etmiştir.

Üçüncüsü: Kuram, bir kütle çekim etkisi altında saatlerin daha yavaş işleyeceğini öngörmekteydi. Yani yere yakın konumda bulunan bir saat, bir kulenin tepesinde bulunan bir saate göre daha yavaş çalışmalıydı. Bu etkinin de deneysel olarak ölçümü yapılmıştır. Oysa bütün bunlar, o kadar da etkiliyici testler/sınamalar sayılmaz. Çünkü söz konusu bu etkiler her zaman hem çok küçüktür, hem de aynı sonuçlar pekala başka kuramlar tarafından da öngörülebilirdi.

Şimdilerde ise durum artık dramatik ölçüde değişmiştir. Yaptıkları son derece olağanüstü bir dizi gözlemden dolayı Hulse ve Taylor 1993 yılında Nobel Ödülü’nü aldılar.

Bir de Genel Görelilik’e özgü olan ve Newtoncu kütleçekim kuramında hiç mi hiç bulunmayan bir başka özellik vardır. Buna göre, birbiri etrafında dönme hareketi yapan cisimler, kütleçekim dalgaları halında enerji yayar. Bunlar ışık dalgalarını andırsalar da, aslında elektromanyetik alan içinde değil, uzay-zaman içinde oluşan dalgalanmalardır.

Bu dalgalar, sistemden sürekli olarak enerji çeker. Enerjinin çekilme hızı, Einstein’in kuramına başvurularak kesin olarak hesaplanabilir. İkili nötron yıldızı sistemindeki enerji kaybının bu yolla hesaplanan hızı, yapılan gözlemlerle tastamam uyuşuyor. Bu durum, son yirmi yılı aşkın süredir yapılan gözlemlerce, bu nötron yıldızlarının yörünge periyotlarında ortaya çıkan hızlanmaya ilişkin ölçüm sonuçlarında görülmektedir.

Sözkonusu sinyallere ilişkin zamanlama öyle şaşmaz bir doğrulukla saptanmaktadır ki, son yirmli yılı aşkın bir süre boyunca kuramın bilinen doğruluk derecesinin on üzeri ondörtte bir dolaylarında olduğu ortaya çıkmaktadır. Bu, Genel Görelilik’i bilim tarihi boyunca en duyarlı biçimde sınanan kuram olma konumuna getirmektedir.

Bu öyküde kıssadan hisse bir ders var. Einstein’ı, ömrünün sekiz yılını ya da belki daha fazlasını harcayarak Genel Kuramı geliştirmeye motive eden etkenler, gözlem ve deney sonuçları değildi. İnsanlar zaman zaman şu sözleri dile getirmektedirler:

“Aslında, fizikçiler elde ettikleri deney sonuçları çerçevesinde biçimsel bir düzen arayışı içerisine girerler ve birgün gelir bu sonuçlarla uyuşabilecek zarafette bir kurama ulaşırlar. Bu, fizik ile matematiğin birbirleriyle neden bu kadar iyi geçindiklerini açıklamaya yeterli olsa gerek”.

Oysa sözünü ettiğimiz durumda işler hiç de bu şekilde yürümedi. Kuram, özgün biçimiyle hiçcbir motive edici gözlem bulgusuna dayanmadan geliştirildi ve ortaya matematiksel açıdan çok zarif ve fiziksel açıdan da son derece iyi motiflenmiş bir kuram çıktı. Buradaki ana fikir şudur: matematiksel yapı zaten Doğa’nın kendisinde mevcuttur ve kuram asılnda uzayda ait olduğu yerde durmaktadır; bu, herhangi birinin Doğa’ya zorla dayattığı bir şey değildir.

Bu, bu bölümde esas alınan ana noktalardan bir tanesidir. Einstein, zaten yerli yerinde duran bir şeyi açık seçik hale getirmiş oldu. Üstelik, keşfettiği fizik öylesine bir fizik değil, Doğa’da en temelden sahip olduğumuz bir şey:uzayın ve zamanın doğası.

Genel Görelilik’te, fizik dünyasının sergilediği davranışların temelerini gerçekten de olağanüstü kesin derecede kesin bir biçimde belirleyen bir yapıyla karşı karşıya bulunmaktayız. Gerçi Doğa’nın ne yönde davrandığına dikkat etmenin önemi açıkça ortada ise de, dünyamızın sözü edilen temel özellikleri çoğunlukla bu yolla keşfedilmemektedir.

Yalnız bu aşamada bütün diğer nedenler açısından cazip görünen, gelgelelim gerçeklerle uyuşmayan kuramlar yumurtlamamaya dikkat edilmelidir. Oysa burada elemizde, gerçeklerle fevkalede şaşmaz bir biçimde uyuşan bir kuram bulunmaktadır. Kuram’ın içerdiği doğruluk derecesi, Newtoncu Kuram’ın erişebildiği basamak sayısının iki katıdır.

Bir başka deyişle, Newtoncu Kuram’ın duyarlılığı on milyonda birlik bir doğruluk derecesinde iken, Genel Göelilik için bu oranın on üzeri ondörtte bir olduğu bilinmektedir. Bir kuramdan ötekine sağlanan iyileşme, Newton’un kendi kuramının içerdiği doğruluk derecesinde 17. yy’dan bugüne dek geçen zaman içinde görülen artış mertebesindedir. Newton, kendi kuramının binde birlik bir duyarlılıkla doğru olduğunu bilmekteydi; şimdi ise bu duyarlılığın on milyonda bir olduğu bilinmektedir.

 
Hareket Sorunu

Kopernik’in görüşleri, tipik Rönesans adamı, ozan-düşünür Bruno’nun (1548-1600) engizisyon alevlerinde diri diri yakılmasına, bir başka İtalyan Tommaso Campenalla’nın (1568-1639) zindanlarda çürütülmesine, Galileo Galilei’nin (1564-1642) ise yargılamalarla ölüp ölüp dirilmesine yolaçmıştı.

Galileo, serbest düşen cisimlerin (eğik atışlar dahil) ve eğik düzlem üzerindeki bir cismin hareketini inceleyen, bağıl hareket kavramını ortaya atan ve salınan bir sarkacın, zaman aralıklarını ölçmek için kullanılabildiğini kaydeden İtalyan fizikçisi ve astronomicisidir.

Teleskobu keşfedişinden sonra “ben şimdi zaten aklımdan geçen bildiğim şeyin görünen ispatına sahibim” demiştir. Galilei, astronomide birçok önemli keşif yaptı; Jüpiter’in dört uydusunu ve birçok yeni yıldızı keşfetti, Ay’ın yüzeyini inceledi, Güneş lekelerini ve Venüs’ün evrelerini buldu; Samanyolu’nun, çok sayıda yıldızdan ibaret olduğunu kanıtladı.

Bütün cisimlerin, serbest bırakıldıkları zaman yere hemen hemen sabit ivme ile düşeceği iyi bilinir. Galileo’nun, eğik Piza Kulesi’nden aynı anda serbest bırakılan farklı iki ağırlığın, yere yaklaşık olarak aynı zamanda çarptığını gözleyerek, bu gerçeği ilk kez keşfettiği rivayet edilir.

Bir demir para ile buruşturulmuş bir kağıt parçasını aynı anda bir yükseklikten bırakalım. Hava direnci yokken, her ikisi de aynı hareketi yapacaklar ve yere aynı zamanda çarpacaklardır. Hava direncinin ihmal edilliği, idealleştirilmiş haldeki böyle bir hareket, serbest düşme olarak tanımlanmaktadır.

2 Ağustos 1971′de böyle bir deney, astronot Davit Scott tarafından Ay üzerinde yapıldı. Astronot, bir çekiç ve bir şahin tüyünü aynı anda serbest bıraktı ve Ay’ın yüzeyine aynı anda düştüklerini gözledi. Bu gösteri deneyi Galileo’yu kesinlikle onaylamıştır. Galileo’nun mekanik bilimindeki başarıları, Newton’un Hareket Yasalarının gelişmesinde önemli paya sahiptir.

Fırlatılan bir okun hareketi nasıl oluşur? Aristo’nun bulduğu açıklama şöyleydi: Bir ok ya da benzeri cisim havaya atıldığı zaman, önünde bulunan havanın yerini alır; hava, sürekli olarak okun arkasına geçer ve onu iterek yol almasını sağlar. Doğal olarak bir süre sonra, okun önünden arkasına geçen hava gücünü yitirir ve giderek ok yere düşer.

Aristoteles, bu açıklamayı aslında vakumun olanaksız olduğunu savunmak için yapmıştı. Öyle ya, hareket ancak havanın varlığında gerçekleşebilirdi. Ona göre eğer vakum diye bir şey olsaydı, herhangi bir cismin hareketini değişmez bir hızda ve doğrusal olarak sürdürmesi gerekirdi. Böyle birşey de olanaksız olduğundan vakum da olamazdı.

Bu açıklama, oku ileri doğru meleklerin ittiği düşüncesinden çok ileri olmasına karşın yanlıştı. Ama 2.000 yıl kadar insanlara doğal geldi. İlk bakışta Yeryüzü’ndeki hareketi ile gökyüzündeki cisimlerin hareketi bir diğeriyle ilişkisiz olarak görünür. Gökcisimleri Evren’in merkezi sayılan Dünya etrafında dolanır durur.

Yeryüzü’ndeki cisimler ise doğal olarak hareketsizdir, bir dış kuvvet etkisinde harekete başlatıldıklarında bir doğru üzerinde bir süre yol aldıkktan sonra durdukları gözlenirdi. Bu iki hareket türü karşılaştırıldığında, gökteki cisimlerin sürekli hareketi için bir dış etken, yani bir hareket ettirici aranır ve bu da felsefi tartışmalara konu edilirdi.

Galileo, şu soruyu soruyordu: Bir cisim, kendine etkiyen hiçbir kuvvet yoksa nasıl hareket eder? Bu soru, alışılmışın dışında bir soruydu. 16. yüzyıldan önce yaşamış bilim adamları, maddenin durgun halini onun doğal hali olarak düşündüler. İlk kez Galileo, maddenin doğal hal ve hareketine farklı bir yorumla yaklaşmıştır.

Galileo, sürtünmesiz yüzeylerde hareket eden cisimlerle ilgili bir düşünce deneyi geliştirerek, hareket halindeki cismin durmasının onun doğal hali olmadığını, hiç durmadan yoluna devem etmesi gerektiğini söylemiştir. Ayrıca cisimler hareket halinde iken, durmaya ve hızlanmaya direnme (eylemsizlik) tabiatına sahip olduğu sonucuna da varmıştır.

Her gün çevremizde gördüğümüz hareketi, başka bir ortamda sınama sorusu, günlük deneyin sınırlandırmalarına meydan okuyan bir soru. Çünkü Yeryüzü’nde, ağırlığın etkilemediği, hava ya da suyun direnciyle karşılaşmayan hiçbir hareket yoktur.

Galileo, sınırları zorluyordu. Tarihte ilk kez sistemli deneylerle doğayı sorguluyordu; görüngüleri soyutlayıp ayırarak basitleştirmeler yapmayı başardı. Buradan “Eylemsizlik İlkesi” ni tanımladı. Bu ilke şöyle der: “Kendisini hiçbir hareket nedeninin (sonra buna kuvvet denecektir) etkilemediği bir cisim, düzgün doğrusal bir hareket yapar.”

Bilimin, belki de en önemli sorunu, çağlar boyu hareket sorunu oldu. Aristoteles bize düzgün hareketin, ancak onu sürdürecek bir kuvvet olduğu zaman olanaklı olduğunu söylemişti. Bu “gerçek” temelde gözlemlerle uyum içindeydi. Sonra, düşen nesnelerle ilgili gözlemlerinde daha kesin sonuçlar alan Galileo, tam tersini söyledi. Ancak Aristo’nun bilimsel “gerçeği” yüzyıllar boyu geçerli olmuştur.

Modern bilimin öyküsü, bir İtalyan dahisiyle yani Galileo ile başladı. Hareket bilmecesine ilk el atan O’dur. Düşme yasalarını, sarkacı ve teleskopu bulan Galileo, aynı zamanda Kopernik Sistemi’ni savunuyordu.

Galile, Jüpiter’in uydularının, Gezegen çevresinde dolaştıklarını görünce, bunun Güneş merkezli sistemin bir minyatürü olduğu düşüncesine ulaşmakta gecikmedi. Kopernik zamanında, hatta yüzyıllar sonra bile Kopernik Kuramı’nı doğrulayan kanıtlar pek ortada yoktu.

Galile, Jüpiter’le ilgili gözleminin ışığında, benzeyişe dayanarak, Kopernik Kuramı’nın doğruluğunu ileri sürebilirdi. Bu yüzden suçlanmış ve 1616′da Engizisyon Mahkemesi’ne verilmişti. Engizisyon, Evren’in merkezinin Güneş olduğu fikrini budalaca ve saçma bulmuştu.

Papa 5. Paul’un tavsiyesi ile Galileo, bu görüşünden vazgeçmeye çağrılmıştı. O da Kopernik Sistemi’ni bundan sonra savunmayacağına söz vermiş, ant içmişti. Ama bir süre sonra “Dünya’daki İki Büyük Sistem Hakkında Konuşmalar” yayımlanınca (1632), yeniden Engizisyon Mahkemesine sevkedildi.

Pişmanlık duyduğunu söylemesine karşın suçlu sayıldı; Papalığın üç yıl gözetiminde bulunmasına ve her hafta bir kere pişmanlık ilahilerini yüksek sesle okumasına karar verildi. Mahkeme’nin kararından sonra “Bununla birlikte, dönüyor” dedi. Bu büyük adam 1637′de kör oldu; 1642′de köşesine çekildi ve o yıl öldü.

Kilise mensupları onun Hıristiyan Mezarlığı’na gömülmesine bile izin vermemişlerdi. Fakat 19. yüzyılda yalnız İtalya’da değil, birçok ülkede adına anıtlar dikilmiştir.”

Galileo, teleskoptan yararlanarak, gökteki Samanyolu’nun aslında çıplak gözle birbirinden ayırtedemediğimiz çok sayıda yıldızdan oluşan bir küme olduğunu ortaya koydu. Güneş’teki lekeleri gözledi. Böylece eskiden beri inanılan, göksel cisimlerin pürüzsüz, kusursuz (yetkin) nesneler olduğu görüşünün yanlış olduğu ortaya çıkıyordu.

Ay yüzeyindeki dağları saptadı; gölgelerini ölçerek, kabaca bu dağların yüksekliklerini hesapladı. Bunlar yalnızca bir başlangıçtı, yüzyılın kalan bölümünde teleskop, astronomide gerçek bir devrim etkisi yapacaktı

Kuantum Kuramı

20. yüzyıla damgasını vuracak iki büyük kuramdan birini, tam da bu yüzyılın başında, 1900 yılında, Max Planck ortaya attı. Enerjiyi, sürekli (kesiksiz) bir akış olarak gören Klasik Enerji Kuramı yerine Kuantum Kuramı’nı ortaya atmıştı. Planck’ın deneysel temellere dayanan önerisi, enerjinin kesik kesik ya da paket paket alınıp verildiği şeklindeydi.

Bu kuramı, 1905 yılında Albert Einstein, fotoelektrik olayını açıklamakta kullandı. Danimarkalı Niels Bohr, 1913′te Kuantum Kuramı’yla, atomdaki elektron düzeninin ilk açıklamalarını yaptı.

Çağımıza damgasını vuran diğer büyük kuram da Görelilik Kuramı’dır. Einstein, 1905′te Özel Görelilik Kuramı’nı, 1915′te de Genel Görelilik Kuramı’nı ortaya koydu. Einstein, kütle ve enerjiyi apayrı şeyler olarak değil, birbirine dönüşen olgular olduğunu ileri sürdü.

O sıralar, Zürih Patent Bürosu’nda memur olarak çalışıyordu. Kütle ve enerjiyi bambaşka iki varlık olarak düşünmeye alışmış bilim çevreleri, kavramları birbirine karıştıran patent bürosunun ” zırvaları” üzerinde durmadı bile. Bilim dünyası, onun söylediklerini ancak 15 yıl tartıştıktan sonra hazmedebildi.

Einstein, 1921′de Nobel Ödülü’nü aldı; ama Görelilik Kuramı’ndan değil de foto elektrik olayından. Arthur Eddington’un alkışlanası ukalalığına göre, o zaman bile birçok bilim adamı göreliliği anlamamıştı. Eddington’a, göreliliği, yalnızca üç kişinin anladığının doğru olup olmadığı sorulduğunda, nükteli İngiliz profesör durmuş ve “üçüncü kişinin kim olduğunu bulmaya çalışıyorum” demişti (Time-2000, Frederic Golden’in yazısı).

Kütlenin yoğunlaşmış bir enerji olduğu görüşü, 1927′de denel olarak da destek buldu. Aston, kütle spektrometresi denen bir aygıtı geliştirmişti. Bu alet, atom kütlelerinin çok duyarlı olarak ölçülmesini sağladı. Bu aygıt yoluyla, özellikle nükleer tepkimelerde, bir kısım kütlenin enerjiye dönüştüğü ve bu dönüşümün Einstein’in ünlü denklemine (enerji= kütle x ışık hızının karesi) uyduğu kanıtlandı.

Atom çekirdeğini bulan Rutherford, 1919 yılında, simyacıların ünlü düşünü gerçeğe dönüştürdü. Havanın azotunu, alfa ışınlarıyla bombardıman ederek onun oksijene dönüştüğünü gördü. Simyacılar, her şeyi altına çevirecek filozof taşını hiç bulamadılar; ama bir elementin, insan elinde başka bir elemente dönüştürülmesi, bir düşün gerçek olmasıdır elbette.

Bir element, başka bir elemente dönüşebiliyordu. İnsanoğlunun eli artık atom çekirdeğine gidiyordu. İlk yapay nükleer tepkime, çekirdeğe ilk müdahale. Atom çekirdeği, pozitif yüklüydü; nötral bir atomda elektron sayısı, eile proton sayısının, yani birim negatif yüklü parçacık sayısı ile birim pozitif yükteki parçacık sayısının eşit olacağı açıktı.

Çekirdekte pozitif yükten başka ne var acaba? Bu sorunun yanıtını Rutherford’un öğrencisi James Chadwick verdi: 1932 yılıydı. Alfa ışınlarıyla berilyum çekirdeklerini bombardıman edince yüksüz bir radyasyonun oluştuğunu açıkladı ve buna nötron dedi. Böylece, atomun üç temel parçacığı elektron, proton ve nötron bulunmuş oluyordu. Alfa, kendisi de bir çekirdek (helyum atomunun çekirdeği) olduğu halde, atom çekirdeğine giden yolu aydınlatıyordu.

Bilim tarihinin en büyük kadını Madam Curie, 4 Temmuz 1934′de gözlerini yaşama kaparken, birkaç ay önce damadının ve kızının -Joliot-Curie çiftinin- yapay radyoaktifliği keşfettiklerini biliyordu. Joiot-Curie çifti, alfa ışınlarıyla, alüminyum çekirdeğini bombardıman ettiler. Sonuçta, radyoaktif bir element (radyoaktif fosfor) oluştuğunu buldular. Böylece, bir inanışa daha son verildi: Radyoaktiflik, yalnızca doğadaki elementlerin bir özelliği değildi; onu insanoğlu da “yaratabilir”di.

İnsanoğlu, radyoaktif elementler de üretiyordu artık. Bombardımanda kullanılan radyasyonlar, doğal radyoaktif maddelerden sağlanıyordu. Belli ki, doğal kaynaklara bağlı kalmamak ve doğal olanlardan yayılan parçacıkları hızlandırarak kullanmak nükleer tepkimeleri çeşitlendirecekti. Atlantik’in iki yakasında hemen aynı anda hızlandırıcılar yapılmaya başlandı.

Amerika’da Ennest Lawrence 1930′da, Robert J. van de Graff 1931′de; yine aynı yıl içinde İngiltere’de John Cockroft ile E.T.S. Walton kendi adlarıyla anılan hızlandırıcılar yaptılar. Çok kısa sürede, 3 yıl içinde 1937′de keşfedilen radyoaktif izotop sayısı 200′ü bulmuştu.

H. G. Wells, 1913 yılında, The World Set Free: A Story of Mankind adlı kurgu bilim romanını yayınlamıştı. Bu romanda, bazı tahminler de yer alıyordu. Örneğin, 1933′te yapay radyoaktif maddelerin bulunacağını ve 1956 yılında atom bombasının kullanılacağı hayali savaşları anlatmıştır. O günlerde bunlar neredeyse akıl dışı şeylerdi. Yapay radyoaktiflik, yazarın öngördüğü tarihten bir yıl önce keşfedildi, ama savaşa neden olmadı. Atom savaşı, yani atom bombasının kullanılması ise yazarın öngördüğünden onbir yıl önce gerçekleşti.

Macar doğumlu, Musevi asıllı fizikçi Leo Szilard, 1932 yılında Berlin’de çalışırken, nasılsa bu romanı okuyor ve çok etkileniyor. Ertesi yıl göçe zorlanıyor ve İngiltere’ye gidiyor. Romandan aldığı esinle “zincir tepkimelerine dayalı kanunun patenti” ni 1934 yılında İngiliz Amirallik Dairesi’ne tescil ettiriyor.

Kuantum Kaosu

”Kuantum teorisi karşısında şaşkınlığa uğramayanlar bu teoriyi anlamamış demektir” diyen Fizikçi Niels Bohr, bu teorinin ne kadar zor anlaşıldığına dikkat çekiyordu. Yüzyılın başlarında fizikçiler, radyasyonun dalga gibi hareket ettiğine inanıyordu. Max Planck’ın enerjinin parçacıklar veya kuvanta tarafından emildiğine ilişkin keşfi, fizikçiler tarafından pek tatmin edici bulunmadı. Planck, bunun üzerine, nesnelerin parçacık şeklinde enerji yaydığını duyurdu. Bundan sonraki 20 yılda bilim adamları, enerji ve maddenin dalga ve parçacık özelliği taşıdığını kabul ettiler.

1927 yılında, Werner Heisenberg, ”Belirsizlik İlkesi”ni bilimsel bir biçime dönüştürdü. Daha sonraları Nazi Atom Enerjisi Projesi’nin başına getirilen Heisenberg, atomdan küçük parçacıkların pozisyon ve momentumlarının aynı anda ölçülmesinin mümkün olmadığını bildirdi. Bu teori Albert Einstein’ı yalnızca şaşırtmadı, bilimsel birikimlerinin altüst olmasına yol açtı.

1920′li yılların ortalarında Alman fizikçi Max Born, elektron gibi parçacıkların belirli bir pozisyonu işgal etmelerinin çok düşük bir olasılık olduğunu ileri sürdü. Einstein, Born’a yazdığı bir mektupta, ”Evren yasalarının şans üzerine kurulu olduğuna inanmıyorum; bence Tanrı kumar oynamaz” diyerek, Belirsizlik Kuramı’nı onaylamadığını belirtti

Özel Görelilik Kuramı

Einstein, 1905′de esirin gereksiz ve fazla bir kavram olduğunun ilan ettikten sonra Mach’tan etkilenerek kurduğu özel görelilik kuramında zaman ve uzayın Tanrı ile olan ilişkilerini, kopardı ve onları insanlara ilişkin göreli birer kavrama dönüştürdü. Artık zaman ve uzay düşünce ürünü olmayıp ölçülebilen şeyler haline geldi.

Ondokuzuncu yüzyılın sonlarında ışığın elektromagnetik dalgalardan oluştuğu ve bu dalgaları uzak mesafelere taşıyan gözle görülemez, seyrek, esnek ve ağırlıksız bir ortamın (esir) var olduğu kabul ediliyordu. Eğer dünya böyle bir ortamda saniyede otuz km.lik bir hızla hareket ediyorsa zıt yönde bir esir rüzgarının oluşması ve ayrıca bu esir rüzgarıyla birlikte hareket eden ışığın bu rüzgara karşı hareket eden ışığa göre daha büyük bir hıza sahip olması gerekiyordu. Oysa ki 1887 yılında Albert Michelson ile Edward Morley, yaptıkları deneylerle ışık hangi yönde hareket ederse etsin, ışık hızının değişmediğini saptadılar. O halde, acaba esir diye bir şey yok muydu?

Esirin varolduğuna inanan bazı bilim adamları, Michelson ve Morley’in ulaştıkları sonucu yapay olarak etkisiz kılmaya çalıştılar. Örneğin, George Fitzgerald, dünyanın esir içinde hareket ederken hareket doğrultusunda büzüldüğünü ve bu büzüme ile ışığın hızında ortaya çıkacak olan farkın yok olduğunu ileri sürdü. Ne var ki, esirin varlığını savunmak için geliştirilen bu ve buna benzer açıklamalar bilim adamlarını tatmin etmiyordu.

İşte belirsizliğin sürdüğü böyle bir atmosferde, Einstein cesurca esir kavramının bir işe yaramadığını ve fizikten atılması gerektiğini vurguladıktan sonra özel görelilik kuramının iki temel ilkesini ortaya koydu:

1 – Bir deney yalnız göreli hareketi saptayabilir. Başka bir deyişle hiçbir deney mutlak durağanlığı veya düzenli hareketi saptayamaz. (Örneğin, bu ilkeye göre esirin varlığını saptamak olanaksızdır.)

2 – Işık, kaynağına bağlı olmaksızın, boşlukta sabit bir hızla hareket eder.

Einstein, bu iki temel ilkeyi, bazı düşünce deneyimlerini ve matematiği kullanarak Newton fiziğinin ana kavramlarını kökünden değiştirdi. Newton’a göre zaman mutlaktır yani evrensel olarak farklılık göstermez ve geçmişten geleceğe doğru düzenli bir biçimde akar. Sağduyuya uygun olan bu evrensel zaman anlayışına göre eşzamanlılık da evrenseldir.

Mutlak zaman kavramına karşı çıkan Einstein’a göre zaman kavramını içeren önermeler eşzamanlı olaylar hakkında ortaya konan önermelerdir ve eşzamanlılık iki olayın aynı anda gerçekleşmesi anlamına gelmektedir. Örneğin, “Mavi Tren Ankara Garına saat yedide gelecektir” demek saatimin akrebinin yedi üzerine gelmesiyle Mavi Trenin Ankara Gar’ına girmesi olayının aynı anda gerçekleşmesi yani bu iki olayın zamandaş olması demektir.

Ancak Einstein’a göre zaman, daha doğrusu eşzamanlılık, mutlak ve everensel değildir, çünkü bir gözlemci için eşzamanlı olan bir olay genellikle başka bir gözlemci için eşzamanlı değildir. Einstein’ın bu sonuca nasıl ulaştığını anlayabilmek için şu düşünce deneyini gözden geçirebiliriz:

Bir trenin (devingen sistem) orta noktasında iki ışık ışınını ters yönlere aynı anda gönderelim. Tren içindeki gözlemci için ışığın hızı (c) sabit olduğundan onun sistemde bu iki ışık ışını ters yöndeki duvarlara aynı zamanda ulaşır; gene bu gözlemci için bu iki olay (ışık ışınlarının ters yönlerdeki iki duvara çarpması) zamandaş olacaktır. Peki, trenin dışındaki gözlemci ne diyecektir?

Onun için de kendi sisteminde ışığın hızı sabittir; ancak trene baktığında duvarlardan birinin ışıktan uzaklaştığını, diğerinin ışığa doğru ilerlediğini görür. Böylece ona göre, ışık ışını kendisine yaklaşan duvara daha erken, kendisinden uzaklaşan duvar ise daha sonra çarpacaktır. Bundan çıkan kaçınılmaz sonuç şudur: Bir sistemdeki gözlemci için zamandaş olan iki olay, bu sisteme göresel düzgün devinen ikinci bir sistemdeki gözlemci içinse zamandaş değildir.

Acaba bu iki gözlemciden hangisi haklıdır? Einstein’a veya birinci temel ilkeye göre iki gözlemci de haklıdır. Eğer zaman kavramı göreli ise, fiziğin diğer temel kavramları da göreli olmak zorundadır. Örneğin, bir cismin uzunluğunu belirlemek için iki farklı gözlemci farklı zamanlarda ölçümler yapacaklarından (çünkü eşzamanlılık onlar için aynı değildir.) farklı değerler saptayacaklardır.

Özel görelilik kuramındaki olaylar ile Mach’ın algıları (elementleri) arasında bir fark yoktur. Örneğin, saatin akrebinin hareketiyle Mavi Trenin Ankara Garına girmesi aynı anda algılanan olaylardır. Aynı şekilde düşünce deneyimindeki gözlemcilerin gözlemleri de algılardan ibarettir. İşte Einstein’ın kuramında zaman ve uzay kavramaları ölçülebilen ve algılanabilen yani insanlara göre anlam kazanan kavramlar dönüştürüldükleri için Machçılığın Einstein üzerinde önemli bir rol oynadığını iddia edebiliriz.

Nitekim Einstein bile Mach’ın etkisinde kaldığını arkadaşlarına yazdığı mektuplarda açıkça belirtti. Hatta bizzat Mach’a yolladığı mektuplarda onun bir öğrencisi ve izleyicisi olduğunu açıkça itiraf etti. Bununla birlikte Mach hiçbir zaman özel görelilik kuramını tam olarak desteklemedi.

Einstein, zamanın ve uzayın göreli kavramlar olduğunu deneyler yaparak göstermiş değildir, çünkü onun özel görelilik kuramına ilişkin olarak sözünü ettiği deneyler zihninde yaptığı deneylerdir. Ayrıca bu kuramın temel direkleri olan iki ilke tamamen usun ürünleri olduklarından onları deneyimsel yöntemle doğrulama ya da yanlışlama olanağı yoktur.

Özel görelilik kuramının bir sonucu da madde ile enerjinin eşdegerliğini ve birbirlerine dönüşebilirliğini gösteren “E = mc2″ nin formülüdür. Bu formülde E enerjiyi, m cismin kütlesini ve c de ışığın hızını temsil etmektedir. Bu formül, çok küçük bir madde parçasının çok büyük miktarlarda enerji içerdiğini ortaya koydu ve böylece nükleer çağa girilmiş oldu

Büyük Patlama’dan Öncesi

Evren’in, “big bang” olarak adlandırılan Büyük Patlama’dan önceki hali, bilim adamları tarafından laboratuvarda oluşturuldu. New York Times Gazetesi’nin birinci sayfadan verdiği habere göre, deney İsviçre`nin Cenevre Kenti’ndeki bir laboratuvarda gerçekleştirildi.

Laboratuvarda meydana getirilen söz konusu maddenin,”quark” ve “gluon” cisimlerinin aşırı derecede sıkıştırılmış gaz hali olduğu bildiriliyor. Bu gazın içinde, bugün Evren’deki tüm maddelerin atomlarını oluşturan proton ve nötronlar yeralıyor.

Deneyin, kısa adı CERN olan Avrupa Parça Fiziği Laboratuvarı`nda meydana getirildiğini de yazan gazete, bilim adamlarının bu sayede Evren’in oluşumuna yol açan bu büyük patlamanın (big bang) gerisindeki itici güçleri anlamaya çalıştıklarını yazdı.

Doğada “quark” ve “gluon”ları birbirinden ayırma olanağı bulunmuyor. Bilim adamları bu olayı laboratuvarda gerçekleştirebilmek için proton ve nötronları sıkıştırdıktan sonra aşırı derecede ısıttılar ve ilk kez quark ve gluon`ların ayrılmasını sağladılar.

Olayı yorumlayan Heidelberg Üniversitesi öğretim üyelerinden Dr. Johanna Stachel, “Böylece ilk kez maddenin yeni bir halinin yaratıldığını” ifade etti.

Maddenin bu haline NA45 adı verildi. Maddenin “big bang” olayından sonra, 10 mikro-saniye (saniyenin milyonda biri) süreyle bu halde kaldığı tahmin ediliyor. Bilim adamları Evren’in, günümüzden 15 milyar yıl önce, bu büyük patlamayla oluştuğuna inanıyor.

Şişirme Kuramı

Şişirme Kuramı, Büyük Patlama’dan kısa bir süre sonra, Evren’in aşırı derecede hızlı (üstel) bir genleşme devresi geçirdiğini ileri sürmektedir.

Büyük Patlama Kuramı’nın Soruları

Büyük Patlama Kuramı, kozmik mikrodalga fon spektrumunu (tayfını) ve hafif elementlerin kökenini başarılı olarak açıklarken, birkaç önemli soruyu da açık bırakmaktadır:

Niçin Evren, en büyük uzunluk ölçeklerinde bu kadar yeknesaktır?

Niçin Evren’in fiziksel ölçeği, kütle çekimin temel ölçeği, bir atomik çekirdeğin boyutunun bir trilyonda bir milyarı olan, Planck uzunluğundan bu kadar çok büyüktür?

Niçin Evren’de bu kadar çok foton vardır?

Maddenin yoğunluğundaki başlangıç dalgalanmasını, hangi fiziksel işlem ortaya çıkarmaktadır?

Şişirme Kuramı

Alan Guth, Andrei Linde, Paul Steinhardt ve Andy Albrecht tarafından geliştirilmiş olan Şişirme Kuramı, bu sorulara ve kozmolojideki birkaç açık soruya da cevaplar sunmaktadır. Bu, Büyük Patlama’dan kısa bir süre sonra Evren’in aşırı derecede hızlı (üstel) bir genleşme devresini ileri sürmektedir.

Bu süre esnasında, Evren’in enerji yoğunluğuna, sonradan maddeyi üretmek için bozulan bir kozmolojik sabit terimi ve bugün Evren’i dolduran radyasyon hakim olmuştur. Şişirme Kuramı, modern fizikteki simetri kırılması ve faz geçişleri gibi önemli fikirleri kozmolojiye bağlamaktadır.

Şişirme Kuramı Kehanetleri

En basit şekliyle, Şişirme Kuramı, birkaç önemli kehanette bulunmuştur:

Evren’in yoğunluğunun kritik yoğunluğa yakın olduğu ve bu yüzden Evren’in geometrisinin düz olduğu.

İlk Evren’de başlangıçtan beri varolan yoğunluktaki dalgalanmaların tüm fiziksel ölçekler üzerinde aynı genliğe sahip olduğu.

Ortalama olarak, kozmik mikrodalga fon sıcaklığı dalgalanmalarında eşit sayıda sıcak ve soğuk noktası olması gerektiği.

MAP, bu tahminleri test edebilecektir

 

Cumhuriyet Döneminde Bilim Tarihi ve Gelişmesi

Posted by: Pelikan®   
Eylül 28th,
2008
Bilim tarihinin tarihsel gelişimini anlatmadan önce ilkin bilim tarihi nedir? Sorusuna cevap vermek gerekir. Bilim tarihi basit bir tarifle bilimsel bilginin bir süreç içindeki gelişim ve değişimlerini, onları üreten toplumlardaki değişim süreçlerinin ışığında ele alıp değerlendiren bir disiplindir. Adından da anlaşılacağı gibi, bilim tarihi aslında iki disiplini kavrayıp kapsayan bir disiplindir. Bunlardan birisi bilim diğeri tarihtir. Bunlardan bilim, bilindiği üzere, doğayı, insanı ve toplum yapısını inceleyen disiplinlerden meydana gelen, belli bir yöntemi olan sistematik bilgi bütünüdür. Tarih ise, insanla başlayan tarihi süreç içinde olup biten olayları, çeşitli yazıları doküman ve muhtelif belgelere dayalı olarak inceleyen bir disiplindir.

Bilim tarihi ise bir disiplin olarak, konusu bilim olmakla birlikte, tarihi yöntemi kullanan, konuyu tarihsel olarak ele alan bir disiplindir. Ancak daha önce de ifade edilmiş olduğu gibi, bilim tarihçisi bilimsel olayları sadece kronolojik açıdan ele almaz, aynı zamanda, toplum içinde onun hangi şartlarda ortaya çıktığını ve hangi şartlarda geliştiğini de araştırır. Dolayısıyla, bilim tarihi sadece salt siyasi tarih ve siyasi olayları göz önünde bulundurmaz; bilimin seyrini, toplum değerlerini, yapısını ve genel olarak toplumdaki temel prensipler ve toplumu şekillendiren her türlü olayı da göz önünde bulundurarak değerlendirir. Bundan dolayı onun, başta felsefe olmak üzere, dinle ve sanatla olan bağlantısı inkar edilemez.

Tarih boyunca sanat, düşünce ve duyguların ifadesi olmuştur ve sadece estetik kaygılar taşımamış, hatta tersine, çoğu zaman doğal bir şekilde gelişmiştir. Basit ve çok bilinen bir örnek verecek olursak, on beşinci yüzyılda Rönesans hareketleri sırasında, sanatkarlar, doğayı daha iyi tanımak için yoğun bir çaba içine girmişler ve dolaylı olarak bitki, hayvan ve insan yapı ve fonksiyonlarını karşılaştırmalı bir şekilde incelemişler, ve canlının hareket prensiplerinden esinlenerek, cansız doğanın kurallarını belirlemeye çalışmışlardır. Leonardo da Vinci ve Michael Angelo bunun en güzel iki örneğidir. Leonardo kuşlardaki uçabilme özelliğini incelemiş, insanın da uçabileceğini iddia etmiş ve yapay kanat projelerini şekillendirmiştir. Yine aynı sanatkar, ilk deniz altı projelerini de öneren kişidir. Ancak bunları özel örnekler olarak değerlendiremeyiz; bu örnekleri, arkeolojik dönemlere kadar götürmek mümkündür. Biz ilk insanların kullandıkları kapkacak ya da hayat şekilleri, ne gibi bir teknik ya da bilim adına sahip oldukları bilgiyi mağara ya da kaya resimleri sayesinde öğreniyoruz. Böylece hem onların resim sanatı hem de bilim ve teknoloji adına ne ürettiklerini belirleyebiliyoruz.

Aynı şekilde, bilim ve din ilişkisi de bilim tarihçisi için göz ardı edilmemesi gereken bir husustur. Hemen her devirde bilim ve din arasında kaçınılmaz bir ilişki söz konusu olmuştur. Bu ilişki zaman zaman daha yüzeysel, daha yoğun olarak kendini hissettirmiştir. Örneğin, İslam Dünyasındaki bilimsel faaliyetin ilk yüzyıllarında özellikle bu etki çok yoğun olarak hissedilmiş; bilimsel çalışmayı, yeni ortaya çıkan İslam Dini adeta yönlendirmiştir. Bunun Doğuda da örnekleri vardır. Örneğin Buda, sadece zihniyet olarak yeni bir felsefenin doğuşunda etkin olmamış; bütün yaşam tarzını etkilemiş; bilimsel faaliyeti deyim yerinde ise adeta yönlendirmiştir. Hıristiyan Dini’nin de hiç de etkisiz olduğunu söylemek mümkün değildir. Özellikle de Ortaçağda bu etki kendisini yoğun bir şekilde hissettirmiştir.

Burada, kültürün temel taşları olan sanat ve dinle ilgili kısa açıklamalardan sonra, yine kısaca bilim felsefe ilişkisine göz atalım. Bilim ve felsefe ilişkisi, sanat ve dinle karşılaştırıldığında çok daha farklı, çok daha yoğun olarak kendisini ortaya koymaktadır. Hatta diyoruz ki, felsefenin olmadığı bir toplumda bilim adına pek bir şey yapılamaz; felsefe, bilimin adeta, deyim yerinde ise, üçüncü boyutu gibi görev yapar. Örneğin hala üzerinde çalışmalar yapılan Aristo felsefesini ele alacak olursak, onun temellerinin varlığın esaslarını açıklamaya yönelik olduğunu görmekteyiz. Maddenin özelliklerine ilişkin olarak vermiş olduğu hareketle ilgili açıklamalarının, on yedinci yüzyıla kadar hareket kuramları olarak benimsendiği bilinmektedir. Aynı şekilde, Aristo’nun kuramlarının evrende de geçerli olduğu kabul edilmiş ve Newton’un konuya ilişkin çalışmalarına kadar bu bilgiler bilim adamlarınca kabul görmüş; çalışmalarındaki teorik esaslar olarak değerlendirilmiştir.

Newton’un çalışmalarında da felsefenin etkisini izlemek mümkündür. Öyle ki, o yeni fiziğin temellerini atmış olduğu eserinin adını da Philosophie Naturalis Principia Mathematicae (Doğa Felsefesinin Matematik İlkeleri) olarak koymuştur.

Aynı örneği, on yedinci yüzyılda yaygın olarak benimsenen korpüskül teorisi için de yinelemek mümkündür. Aslında M.Ö. Demokritos’a kadar götürülen maddenin yapısının parçacıklardan meydana geldiği anlayışı, on yedinci yüzyılda bir grup bilim adamı tarafından korpüskül teorisi olarak yeniden ve de boyut kazandırılarak ele alınmıştır. Bunlar arasında Böyle, Mayow gibi bilim adamlarının yanı sıra, daha çok filozof olarak tanıdığımız kişiler de vardır; örneğin Descartes gibi. Bu görüş daha sonra sadece maddenin temel yapısının felsefi olarak bir değerlendirilmesi değil, bilimsel olarak da kabulü şeklini almış, canlı ve cansız her şeyin esasının aynı olup, parçacıklardan meydana geldiği öngörüsü Dalton’la anlam kazanarak, atom teorisi şeklinde ortaya çıkmıştır. Fizikte atom teorisi ve onunla ilgili ayrıntı şekillenirken biyolojide de hücre teorisi ile ilgili çalışmaların yoğunluk kazandığı izlenmektedir.

Buraya kadar verilen örnekleri artırarak gitmek mümkündür. Bu örnekleri şöyle toparlayabiliriz: bilim felsefesiz olmaz; bilim felsefe ile yandaştır; onlar birbirini destekler. Böylece, bilimin teorik boyut kazanmasında felsefenin rolünü yadsımamak gerekir.

Nitekim son dönemde bilimsel bilginin felsefeyi sorgulaması, bilginin felsefi olarak ele alınıp, değerlendirilmesi sonucunda felsefesinin ortaya çıkışı bir tesadüf olmadığı gibi, iyi bir bilim felsefecisinin de bilim tarihi çalışanları arasından çıkışı da bir tesadüf değildir. Nasıl ki bilim adamı, kendi ilgilendiği disiplinin felsefi boyutunu bilmek durumunda ise, örneğin matematik ya da fizik çalışmalarında onların felsefi boyutunu da irdelemek zorunda ise, bilim felsefesi yapabilmesi için de bilimin tarih içinde geçirdiği serüvenleri; bilim adına yapılan çalışmaları bilmesi; onlar üzerinde tefekkür etmesi gerekir. Onun içindir ki, son dönem bilim felsefecileri diye tanıdığımız Thomas Kuhn ve Joseph Needham, aynı zamanda bilim tarihi konusunda da önemli çalışmalar yapmışlardır.

Bütün buraya kadar verilen bilgiye dayanarak, bilim tarihinin tıpkı bilimin kendisi gibi, felsefe ile iç içe olduğunu söylersek hiç de abartmış olmayız. Bilim tarihi bilmeksizin bilim felsefesi yapılamayacağı gibi, felsefe bilmeden de bilim tarihi yapılamaz.

Bilim felsefesi çalışmaları gibi, bilim tarihi de her ne kadar daha önce belli ölçülerde yürütülen çalışmalar olsa da, formal olarak, başlangıcı pek de eskiye gitmez, her ne kadar, bilim tarihinin kurucusu olarak kabul edilen George Sarton, konunun ele alınışını Aristo’ya kadar götürse de, bu disiplinin başlangıcı genellikle on dokuzuncu yüzyılda yayamış olan August Comte’la tarihlendirilir.1

Ancak, hemen biraz önce de belirtilmiş olduğu gibi, bilim tarihinin formal başlangıcı Amerika’da Harvard Üniversitesinde görevli Belçikalı bilim adamı George Sarton’la başlatılmış ve ilk resmi öğretim birimi olarak da ilk defa burada temellendirilmiştir.

Aslında bilim tarihi ile ilgili çalışmalar, her ne kadar formal boyutta olmasa ve İslam Dünyasında da bu konudaki çalışmalar yirminci yüzyılın ilk yarısına rastlıyorsa da, bu konudaki temel eserler arasında İbn Nedim’in el-Fihrist ve İbn Ebi Useybia’nın Uyun el-Enba fi Tabakat el-Etıbba adlı eserleri gösterilirken, Osmanlı’da yazılmış, çeşitli şuara tezkereleri, Taşköprizade’nin Şekaik-i Nu’maniye2 adlı eseri (16. yy) ve çeşitli kişiler tarafından bu esere yapılmış zeyiller, Katip Çelebi’nin Keşfi’-Zünun3 adlı eseri örnek olarak verilebilir. Daha geç dönemlerde ise, Mehmed Süreyya’nın Sicill-i Osmani’si (H.1311) ve Bursalı Mehmed Tahir’in Osmanlı Müellifleri örnek olarak verilebilir. Yine bu paralelde olmak üzere, Salih Zeki de Asar-ı bakiye (İstanbul 1911) adlı eseriyle bu konudaki öncülerden biridir. Ancak, bilim tarihinin eğitim ve öğretiminin başlangıç çalışmalarının öncüsü ve Cumhuriyetin ilanından sonra bu konuda en bilinen yazar Adnan Adıvar olup, günümüzde hala onun Osmanlı Türklerinde İlim kitabı el kitabı olarak kullanılmaktadır. Ancak Türkiye’de bilim tarihinin bir disiplin olarak eğitim ve öğretiminin başlaması için 1943’lere kadar beklemek gerekmiştir.

Yukarıda söz konusu ettiğimiz çalışmalarda bunlardan ne kadarı gayesine uygun olarak yürütülmüştür, sorgulayalım. İlk adımda belki hiç biri denilebilir. Çünkü ele almış olduğumuz düşünürlerin eserlerinin hemen pek azında bilimsel bilgi ön plandadır ve bilimsel bilginin nispeten ön plana çıktığı çalışmalar daha çok on dokuzuncu yüzyıl sonu ve yirminci yüzyıl başlarına rastlayan çalışmalardır. Halbuki belli ölçülerde de olsa hemen hemen bütün eserlerde tarihi bilgi verilmekte ve tarih yönteminin kullanıldığı gözlenmektedir. Dolayısıyla bu noktadan hareketle değerlendirdiğimizde, geniş açıdan bakmaya çalışarak bir ölçüde de olsa Osmanlılarda yazılmış olan ve yukarıda adlarını verdiğimiz eserlere ve burada söz konusu etmediğimiz benzerlerine, bilim tarihinin ilk eserleri diye bakabiliriz.

Genellikle, Cumhuriyetin ilanı 29 Ekim 1923 ise de, genel olarak Yeni Türk devletinin kuruluşu 23 Nisan 1920 tarihiyle belirlenir. Mustafa Kemal Atatürk bu tarihten itibaren, ilkin yeni ülkenin siyasi yapısını şekillendirmeye çalışmış; adım adım cumhuriyeti hazırlamıştır. Bu arada bilimle ilgili yapılanmanın da temellerini atmayı ihmal etmemiştir, çünkü onun ilkesi “hayatta en hakiki mürşid ilimdir”. Nitekim 22 Eylül 1924 tarihinde Samsun’daki İstiklal Ticaret Mektebi’ndeki konuşmasında şöyle söylemiştir:

“Dünyada her şey için maddiyat için, maneviyat için muvaffakiyet için en hakiki yol gösterici ilimdir, fendir. İlim ve fennin dışında kılavuz aramak gaflettir, bilgisizliktir; doğru yoldan sapmadır.” 4

Atatürk bu konuşmasından çok önce, henüz Cumhuriyet kurulmadan, 22 Ekim 1922’de Bursa’da yapmış olduğu bir toplantıda da düşüncelerini şöyle dile getirmektedir:

“Yurdumuzun en bayındır, en göz alıcı, en güzel yerlerini üç buçuk yıl kirli ayaklarıyla çiğneyen düşmanı mağlup eden zaferin sırrı nedir, bilir misiniz? Orduların sevk ve idaresinde bilim ve fen ilkelerinin kılavuz edinilmesidir… Milletimizin siyasi ve içtimai hayatı ile ulusumuzun düşünümsel eğitiminde yol göstericimiz bilim ve fen olacaktır. Türk milleti, Türk sanatı, Türk ekonomisi, Türk şiiri ile edebiyatı, okul sayesinde ve okulun vereceği bilim ve fen sayesinde bütün olağanüstü incelikleri ve güzellikleriyle oluşup, gelişecektir.”

Daha sonraki toplantılarda yapmış olduğu konuşmalarda da, Atatürk bilimin önemini vurgulamaya devam etmiştir. Bu bağlamda olmak üzere 26 Şubat 1923’de Salihli istasyonunda halka hitaben yaptığı konuşmasında, yukarıdaki görüşlerinden çok farklı olmayan, onları pekiştirir nitelikteki düşüncelerini dile getirmiş ve şunları söylemiştir:

“Memleketimizi kesinlikle koruyabilmek için alınacak önlemlerin en önemlisi ve ilki bilim ve irfan olacaktır. İşte şurada gördüğüm küçük okullular bilim ve irfan ordusunu oluşturacaklardır.”

Cumhuriyetin ilan edilmesinden sonra, bu konudaki görüş ve düşüncelerini daha hızlı bir şekilde uygulama alanına geçirmek isteyen Atatürk, 30 Ağustos 1924’de meşhur meydan savaşının yapıldığı yer olan Dumlupınar’da yapmış olduğu konuşmasında ise, bir ülkenin özgür ve bağımsız olabilmesi için ortaya koyduğu uygarlık ürünleri olması gerektiğini belirterek, şöyle demektedir:

“Uygarlığın yeni buluşlarının ve fennin harikalarının cihanı değişmeden değişmeye sürükleyip durduğu bir devirde yüzyılların eskittiği köhne zihniyetlerle, geçmişe kölece bağlılıkla varlığımızı devam ettirmemiz mümkün değildir.”

Nitekim, 1924’de İstanbul Darülfünunun İstanbul Üniversitesi olarak yeniden şekillendiğini görüyoruz. Ancak, büyük bir ihtimalle yüksek öğretimin o günkü durumu kendisini pek tatmin etmemiş olmalı ki, bu konuda yeni adımların atılmasını desteklemiş; hatta bizzat bu konuda önemli adımlar atılmasında önderlik etmiştir. Bu konu ile ilgili görüşleri, 1933 yılında Cumhuriyet Bayramında yapmış olduğu konuşmasında özetlenerek aşağıda verilmektedir:

“Türk milletinin yürütmekte olduğu gelişme ve uygarlık yolunda elinde ve kafasında tuttuğu meşale müspet bilimlerdir.”

Buraya kadar verilen alıntılardan da anlaşılabileceği gibi, Atatürk için bilimin ve tekniğin bu ülkenin gelişmesinde ne derece önemli rolü olduğu konusundaki görüşlerini belirlemek mümkün olmaktadır. Sadece sözleri ile değil, yaptığı atılımlarla da, bu fikirlerini ne kadar gerçekleştirmek istediğini ispatlamaktadır.

Ulu Önder Atatürk 1933 yılında Üniversite reformu ve daha sonra yüksek öğrenimdeki yapılanma hareketleri sırasında, bir taraftan mevcut yüksek eğitim ve öğretim kurumlarının ataletten kurtulması ve çağdaş bir seviyeye ulaşması için önemli adımlar atarken, ve de bu bağlamda yeni birimler ve yeni ihtisas alanları oluşturulurken, bir taraftan da, yeni başkent Ankara’da yüksek öğrenim kurumlarının yapılanmasında ön ayak olmuştur. Bu bağlamda şekillenen kurumlar arasında 1936 yılında, Türk kültürünün köklerini ve Türk dilinin kökeni ve gelişimini incelemek üzere kurulan D.T.C.F. ve 1946 yılında kurulan Ankara Üniversitesi ve bu öğretim kurumuna bağlı olarak kurulan Tıp ve Fen Fakültelerini verebiliriz. Böylece, ilk defa Ankara’da bir üniversite kurulmuş oluyordu.

Türkiye’de bilim tarihi ile ilgili olarak öğretim başlamadan önce, İstanbul Üniversitesi’ndeki 1933 reformuna müteakip, yeniden yapılanmanın sonucu kurulan disiplinlerden birisi de Tıp Tarihidir. Bu disiplin bir ölçüde bilim tarihi çalışmalarına zemin hazırlamıştır ve bu dalda eğitim veren rahmetli hocamız Süheyl Ünver’dir (öl. 1987). Onun bu konuda yapmış olduğu çalışmaları görmemezlikten gelemeyiz. Öncelikli olarak meslek tarihi ve bir ölçüde deontoloji şeklinde gelişen derslerinin yanı sıra, yoğun bir yayın faaliyeti olan Süheyl Ünver hocamız, sadece tıp tarihi ile ilgili yayınları ile değil, aynı zamanda, bilim tarihi konusundaki çalışmalarıyla da bu konuda öncülük etmiştir. Süheyl Ünver iyi bir gözlemcidir; bulduğu her belgeyi dikkatle izlemiş; gördüğü her şeye bir tarihçi gözü ile bakmıştır. Süheyl Ünver Hocamız için herhalde birçok olumlu değerlendirilmeler yapılabilir, ancak onun en bilinen özelliği herhalde Türkiye’nin en verimli bilim adamı olmasıdır, çünkü hemen her şeyin tarihi açıdan bir belge olduğunu düşünen hocamız, aynı zamanda en kolay yazabilen bir kişi idi.5 Ayrıca çalışmalarını, çoğu zaman resimleriyle süslemiştir. Özellikle de yaptığı tezhiple de, sadece tıp tarihçisi olarak değil, sanat tarihi açısından da kültür tarihimizde ayrıcalıklı bir yere sahip olmuştur.6

Onun yanında yetişen ve asistanı olarak görev alan, sırasıyla, Bedii şehsuvaroğlu’nun, Emine Atabek’in, Nil Sarı’nın, Rengin Dramur’un, Mebrure Değer’in, Ayten Altıntaş’ın ve İstanbul Üniversitesi Tıp Fakültesi’nin Çapa Tıp ve Cerrahpaşa Tıp Fakültesi şeklinde ayrılmasıyla oluşan birimlerden Çapa Tıp Tarihi ve Deontoloji kürsüsünde Bedii Şehsuvaroğlu’nun yanında yetişen Ayşegül Demirhan Erdemir’in, Nuran Yıldırım’ın, ve daha sonra, yine Çapa Tıp Fakültesine Almanya’daki eğitimini tamamlayarak gelmiş olan Arslan Terzioğlu’nun önemli katkıları olmuştur.

Genel olarak bir değerlendirme yapacak olursak, bu bilim adamlarının çalışmalarının daha çok son dönem Osmanlı tıbbı konusundaki çalışmalar üzerinde yoğunlaştıklarını söylemek mümkündür.

Ankara’da ise 1946’da Tıp Fakültesinin kurulmasından sonra, İstanbul Üniversitesi Tıp Fakültesinde olduğu gibi, Tıp Tarihi dersleri verilmeye başlanmıştır. Burada ise rahmetli hocamız Feridun Nafiz Uzluk (öl. 1973) dersler vermiştir. O da Süheyl Ünver gibi, bu disiplinin eğitim ve öğretimine önem vermiş ve bu konuda çeviri ve terkip niteliği taşıyan kitaplar yazmıştır. Feridun Nafiz Uzluk da, Süheyl Ünver gibi, tıp tarihini basit bir meslek tarihi niteliğinde görmemiş; tıp tarihi ile ilgili gelişmeleri ele alırken, bir bilim tarihçisi gibi konuyu ele almış; bilim adamı ya da hekimin hayatı, eserleri, çevre koşullarını da göz önünde bulundurmuştur. Onun da bilim tarihi ile ilgili yayınları bulunmaktadır. Ayrıca, yine o da mümkün olduğunca tarihi belge ve eski eserleri toplamaya gayret göstermiş olup, bilhassa Selçuklu Tarihine ayrı bir ilgi duymuştur.

Ondan sonra, Tıp Tarihi kürsüsündeki elemanlar olarak Yaman Örs, Fuat Göksel ve Berna Arda onun bıraktığı yerden devam ettirmişlerdir. Onların çalışmaları ise daha çok deontoloji ve tıbbi etik konusunda yoğunluk taşımıştır.

Bu arada, kurulan yeni fakülte ve açılan yeni üniversitelerde de tıp tarihi ve deontoloji bilim dalları ile eczacılık tarihi ihtisas dallarının açıldığını görmekteyiz. Bunlar arasında sırasıyla Ege Tıp Fakültesindeki Tıp Tarihi ve Deontoloji Ana Bilim Dalından söz edebiliriz. Buranın kurucusu ve halen hizmet veren Prof. Dr. Ali Haydar Bayat çalışmalarını Osmanlı tıp ve kültür tarihi ağırlıklı olarak yürütmektedir. Ayrıca Ankara Üniversitesi Eczacılık Fakültesinde de Eczacılık Tarihi Ana Bilim Dalı, fakültenin kuruluşundan itibaren faaliyet göstermektedir. Burada halen Prof. Dr. Eriş Asil ve Prof. Dr. Sevgi Şar ve onların yeti.tirmi. olduğu elemanlar hizmet vermektedir.

Ayrıca GATA’da İlter Uzel tarafından kurulan Tıp Tarihi ve Deontoloji bilim Dalı’nın yanı sıra, Bursa’da Uludağ Üniversitesi Tıp Fakültesinde de kurulmuş olan Tıp Tarihi ve Deontoloji Ana Bilim Dalında, İstanbul Çapa Tıp Fakültesinden yetişmiş olan Prof. Dr. Ayşegül Demirhan Erdemir, Adana, Çukurova Tıp Fakültesinde, Prof. Dr. İlter Uzel görev yapmaktadır. Bunların yanı sıra, son olarak kurulan birimlerden biri olarak Hacettepe Üniversitesi Tıp Fakültesindeki Tıp Tarihi ve Deontoloji birimini zikredebiliriz (Erdem Aydın).

Aynı paralelde olmak üzere, Ankara Üniversitesine 1946 yılında bağlanan Veteriner Fakültesinde 1944 yılından itibaren veteriner tarihi dersleri verilmeye başlanmış, 1950 tarihinden itibaren de Veteriner Tarihi ve Deontoloji Kürsüsü kurulmuştur. Buradaki dersleri, daha sonra bu konuda bir birim kurulmasını sağlayan Nihal Erk vermiştir.7 Nihal Erk, özellikle de kaynak eserler üzerindeki çalışmalarıyla daha önceki tarihlerdeki veteriner hekimlikle ilgili çalışmaları ortaya çıkarmaya çalışmıştır. Kendisinden sonra bu görevi Ferruh Dinçer üstlenmiştir.

Buraya kadar ki çalışmalar, daha çok bilim tarihinin kısımları diyebileceğimiz ve bilim tarihi çalışmalarının deyim yerinde ise, yukarıda da belirtildiği gibi, hazırlık çalışmaları niteliğindedir. İlk defa bilim tarihi derslerinin bu konuda ihtisas yapan bir kişi tarafından verilmeye başlanması için Aydın Sayılı’nın Amerika’dan dönmesini beklemek gerekmiştir.

Yukarıda da ifade etmiş olduğumuz gibi, Atatürk’ün bilime verdiği önemin yanı sıra, tarihin önemi üzerinde durduğu da bilinen bir gerçektir. Nitekim Türk Tarih Kurumu8 ve Türk Dil Kurumu’nu kurmak suretiyle bunu açık ve seçik olarak göstermiştir. Onun için bir ülkenin kültürü ve kültürün temel taşı olan dil ve tarihi çok büyük önem taşır. Bu konudaki düşüncelerini D.T.C.F.’yi kurarak Türk dilinin köklerini ve gelişimini karşılaştırmalı olarak incelenmesini sağlayarak somutlaştırmış Tarih ve Macarca kürsüsünü kurarak da, karşılaştırmalı olarak Türk tarihinin incelenmesine öncülük yapmıştır. TTK ve TDK ile D.T.C.F.’nin akademik olarak birlikte çalışmalarını ve Türk Dili ve tarihinin köklerini ortaya çıkarmalarını istemiştir.

İşte bu bağlamda olmak üzere, büyük önder Atatürk iyi yetişmiş tarihçilerin olmasını ve bu gaye ile, Ankara Erkek Lisesinde (bugünkü Atatürk Lisesi) sınavında hazır bulunduğu ve de çok beğendiği öğrenci Aydın Sayılı’nın iyi bir tarihçi olmasını istemiştir. Aslında su mühendisi olmak isteyen Aydın Sayılı onun adına Amerika’da Harvard Üniversitesine George Sarton’un yanına gönderilmiştir. Böylece bu disiplinin kurucusu olan George Sarton’un öğrencisi olmuş ve bilim tarihi konusunda çalışma olanağı elde etmiştir. Sonuç olarak, Aydın Sayılı, bu alanın dünyadaki temsilcisi olarak bilinen kişilerle de dönem arkadaşı olma imkanını bulmuştur.

Burada kısaca bilim tarihinin Türkiye’deki kurucusu olan Aydın Sayılı’yı tanıtalım. Aydın Sayılı 1913’de İstanbul’da doğmuş; ilk ve orta öğrenimini ülkesinde tamamladıktan sonra, yukarıda da işaret edilmiş olduğu gibi, Atatürk’ün önerisi üzerine devlet namına Harvard Üniversitesi’nde eğitimine devam etmiştir. Doktora çalışmalarını George Sarton’un yanında tamamlayan Aydın Sayılı, aynı zamanda, bu alanda Dünya’da ilk doktora yapan kişi ünvanını kazanmıştır. 1943 yılında ülkesine döndükten sonra, Aydın Sayılı D.T.C.F.’nin Felsefe Bölümünde öğretim elemanı olarak göreve başlamıştır. Onunla birlikte bilim tarihi dersleri Felsefe Bölümü ders programlarına girmiştir. Aydın Sayılı 1946’da doçent, 1952’de profesör ve 1958 yılında ordünaryüs ünvanını kazanmıştır. Bilim Tarihi Kürsüsünün kurulması ise 1952 yılına rastlar. Uzun yıllar TTK üyeliği ve kuruluşundan ölüm yılı olan 1993’e kadar başkanlığını yürüttüğü AKM’deki hizmetleri dışında, iyi bir öğretim üyesi ve dünya çapında bir araştırmacı olarak çalışmalarını sürdürmüştür. Aydın Sayılı 1957 yılında Uluslararası Bilim Akademisi üyeliğine seçilmiştir. 1973 yılında Polonyalı meşhur astronom Kopernik konusundaki çalışmaları dolayısıyla, Polonya hükümeti tarafından Kopernik madalyasına layık görülmüştür. 1977’de TÜBİTAK hizmet ödülü almıştır; 1980’de UNESCO uluslararası yazar-editör komitesine seçilmiş; 6 ciltlik Orta Asya Kültür Tarihi çalışmalarında yazar olarak fiilen çalışmıştır. 1990’da bütün bu çalışmaları göz önünde bulundurularak, UNESCO ödülü almıştır. Ayrıca 1981 yılında İstanbul Üniversitesi tarafından üstün hizmet ödülüne layık görülmüştür.

1983 yılında Ankara Üniversitesi D.T.C.F.’inden emekli olan Aydın Sayılı’nın konusuyla ilgili, daha çok birinci el kaynaklara dayalı olarak yaptığı değişik dillerde toplam yaklaşık 120 kitap ve makalesi bulunmaktadır.9

Onun belli başlı çalışmaları arasında, Observatory in Islam (Ankara 1960) ayrı bir yer taşır. O, burada sadece İslam Dünyasında kurulmuş ve belli düzeyde bilimsel çalışmalara olanak sağlamış olan gözlemevlerinden söz etmemiş, aynı zamanda, daha önce yeterince aydınlatılmamış olan bazı konulara da açıklık getirmiştir. Örneğin Memun zamanında Şam’da kurulan Kasiyun Gözlemevi’nin yerinin belirlenmesi gibi. Ayrıca, Semerkant, Gazan Han, İstanbul gözlemevleri hakkında da burada ayrıntılı bilgi bulmamız mümkün olmaktadır. Dünya literatüründe konusunda yapılan nadir eserlerdendir.

Onun önemli çalışmaları arasında yer alan Mısır ve Mezopotamyalılarda Matematik, Astronomi ve Tıp eseri de konusunda yazılmış temel eser niteliğindedir. Her ne kadar, bu kitap bir el kitabı niteliğini taşıyor ya da o gaye ile yazılmışsa da, konularda, özellikle de matematikle ilgili verilen ayrıntı ona bir inceleme eseri niteliği kazandırmaktadır. Eserde, Mısır ve Mezopotamyalılarda matematik, astronomi ve tıp ile ilgili bilgi verilmektedir.

Ayrıca Ord. Prof. Dr. Aydın Sayılı’nın bazı monografi niteliğindeki kitapları ile belli konularda yoğunlaşmış ya da genel ve spesifik konulardaki bilim tarihi araştırmalarını veren makaleleri bulunmaktadır. Bu araştırmalar arasında en önemlilerinden birisi, hocamızın hayranlık duyduğu bilim adamı ve düşünür Beyruni’dir.

Bu çalışmalarının yanı sıra, bilim-bilim tarihi-felsefe konularında yazılmış yazıları ile Atatürk’ün bilimle ilgili düşünceleri hakkında yazıları da vardır. Bu yazılarına ilave olarak, Milli Eğitim Bakanlığında bir yarışmaya da katılmış olduğu Hayatta En Hakiki Mürşid İlimdir adlı bir eseri de vardır. Bu kitabında hocamız Aydın Sayılı burada bize bilim anlayışını vermekte, bilim ve teknoloji arasında farklı belirlemektedir. Ona göre, bilim sürekli ilerleyen, sistematik bir bilgi birikimidir. Teknoloji ise daha çok günlük ihtiyaçlara dönük olup, bilimsel bilginin bir nevi uygulamasıdır. Dolayısıyla, eğer bilimsel çalışma olmaz, bilimsel bilgi ilerlemezse, teknoloji de ilerleyemez ve zaman içinde kendini tüketir. Bilimin ilerlemesi, teknolojiye yeni imkanlar hazırlar; ona gelişme olanağı sağlar.

Burada, Sayılı bilimin ilerlemesinin toplumun ilerlemesi ile paralel olduğunu vurgulamaktadır. Çünkü bilim toplumu şekillendiren öğelerden belki de en önemlisidir. Bilim sayesindedir ki, insan uygar olabilir, çünkü insan doğuştan uygar değildir; uygarlık tek tek başarılara sahnedir, halbuki kültür bütün sahneyi doldurur, çünkü dil, sanat, bilim, felsefe bir bütünlük içinde şekillenir, ve bunların hepsinde gelişim ve değişim eğitim ve öğretimde atılacak dikkatli adımlar sayesinde gerçekleşecektir.

Burada ilginç bir şekilde, günümüzde yoğun bir şekilde gündeme gelen bilimde etik konusu da ele alınmaktadır. Aydın Sayılı’ya göre, bilim adamı etik kurallara dikkat etmelidir, yani bilim toplum içindir, ve bilim insanı göz önünde bulundurmalı; onu ön planda dikkate almalıdır.

Aydın Sayılı çalışmalarıyla göstermiştir ki, bilim tarihi disiplininde araştırma yapabilmek için iki önemli nokta vardır:

1. Tarih yöntemini çok iyi kavramak

2. Belli bir düzeyde bilimsel bilgiye sahip olmak.

Aydın Sayılı, araştırmaların ana kaynaklara dayalı olarak yapılması gerektiğini düşünür; kendi çalışmalarında da bu hususa dikkat etmiştir. Bunun uygulamasının en güzel örneklerini onun makalelerinde görmek mümkündür. Örneğin İbn Sina’nın görme konusunda, eski görme teorisini kabul etmediğini, ve onun bu konuda daha çok İbn Heysem’in de desteklediği ışıklı ya da aydınlık ortamda görmenin mümkün olduğu teorisini benimsediği belirlenmektedir. Sayılı, bu saptamayı İbn Heysem ve İbn Sina’nın eserlerine dayanarak yapmıştır. Yine, İslam Dünyasındaki ilk hastanenin Türkler tarafından yaptırılmış olduğunu belgelere dayanarak göstermiştir.

Buna ilave olarak, yapılan araştırmanın aynı zamanda belli bir dönemi ve belli bir konuyu içermesi gerekir. Örneğin Abdülhamid b. Türk’ün cebir çalışmaları gibi. Dolayısıyla yukarıda da belirtilmiş olduğu gibi, bilim tarihçisi, ele alıp, incelemiş olduğu konuda belli bir temel bilgiye sahip olmak zorundadır.

Onun açıkladığımız esaslara dayalı olarak yapmış olduğu çalışmaları daha çok Türkler tarafından yapılmış çalışmalar üzerinde yoğunlaşmıştır.

Onun asistanlarından olan Sevim Tekeli (doğum 1924-?) Bilim Tarihi Kürsüsünün ilk asistanıdır. Aydın Sayılı’nın bilim tarihi ile ilgili daha çok fizik, matematik, astronomi konuları üzerinde yoğunlaşmasına karşın, onun çalışmaları daha çok astronomi ve de Osmanlılar üzerinde yoğunlaşmıştır. 1992 yılında emekli olan Prof. Dr. Sevim Tekeli, astronomi tarihi ile ilgili çalışmalarının yanı sıra, Bizans bilimi ve Bizanslıların bilime katkısı olup olmadığı konusu ile ilgilenmiş ve aslında, zannedildiği gibi, Bizans’ın bilime pek de katkı yapmadığını ve Fatih’in İstanbul’u zaptettiği dönemde Bizans’ta bazı muhtasar eserlerin dışında, bilim adına pek de çalışma olmadığını, Batı kaynaklarına dayanarak göstermiştir.

Halen Ankara Üniversitesi D.T.C.F.’de Bilim Tarihi Ana Bilim Dalı Felsefe Bölümünde bir birim olarak varlığını sürdürmektedir. Ana bilim dalında Prof. Dr. Esin Kahya, Prof. Dr. Melek Dosay, Doç. Dr. Remzi Demir, Doç. Dr. H.G. Topdemir, Yar. Doç. Dr. Yavuz Unat ve Dr. Ayten Koç Aydın görev yapmaktadır. Onlardan Esin Kahya daha çok kimya ve biyoloji tarihi ve özellikle de tıp tarihi konularında çalışmalar yapmaktadır. Melek Dosay matematik, Remzi Demir, son dönem Osmanlı kültür eserleri, H.G. Topdemir fizik tarihi ve bilim felsefesi, Yavuz Unat astronomi ve teknoloji tarihi, Ayten Koç Aydın ise kimya tarihi konusunda yoğunlaşmıştır.

ODTÜ, Fen-Edebiyat Fakültesinde, her ne kadar müstakil bir ana bilim dalı şeklinde olmasa da, 1970’li yıllardan itibaren, özellikle de Fizik profesörü Feza Gürsey’in önerisi ile, bilim tarihi dersleri verilmeye başlanmış ve bu dersler, Prof. Dr. Sevim Tekeli tarafından verilmiştir. Daha sonra, D.T.C.F. mezunu olup, Amerika’da doktora yapmış olan Cemil Akdoğan, yurda dönüşünde ODTÜ’de görev almış ve orada Fen-Edebiyat Fakültesi Felsefe Bölümünde bilim tarihi ve bilim felsefesi dersleri vermiştir. Ancak 1996 yılında emekli olarak Malezya’ya gidip orada, Kualumpur’da, konusunda ders vermeye devam etmektedir.

ODTÜ’de bilim tarihi elemanlarından biri de, 1989 yılında D.T.C.F. Felsefe Bölümünde bilim tarihi doktorası yapan Şehabeddin Demirel olup, ODTÜ Felsefe Bölümüne geçmiş ve, orada Cemil Akdoğan’la birlikte bilim tarihi derslerini yürütmüştür. Ancak 1996 yılında onun da ayrılmasıyla, oradaki dersleri, Ankara Üniversitesi D.T.C.F Felsefe Bölümü’nden giden öğretim elemanları yürütmüştür. Bunlar sırasıyla Profesör Dr. Esin Kahya, daha sonra Prof. Dr. Melek Dosay ve Doç. Hüseyin Gazi Topdemir’dir.

Türkiye’de ikinci bilim tarihi ana bilim dalı 1984 yılında Ekmeleddin İhsanoğlu tarafından kurulmuştur. İstanbul Üniversitesi Edebiyat Fakültesi, Felsefe Bölümüne bağlı olarak kurulan bu ana bilim dalına daha sonra, İstanbul Üniversitesi Çapa Tıp Fakültesinde doktora çalışmalarını tamamlamış olan Feza Günergun ve daha sonra da Mustafa Kaçar asistan olarak alınmıştır. Ekmeleddin İhsanoğlu temel eğitim olarak kimya eğitimi görmüş olup, bilim tarihi Profesörü olarak İstanbul Üniversitesindeki göreve atandığında, IRCICA’da genel sekreter olarak çalışmaktaydı. Onun ilgi alanı, daha çok Osmanlılardaki bilimsel çalışmalar olmuştur. Feza Günergun teknoloji tarihi ile ilgilenmiştir; Mustafa Kaçar da aynı şekilde, daha çok Osmanlılardaki teknolojik gelişimlerle ilgili çalışmalar yapmıştır. Daha sonra ana bilim dalına, sırasıyla İhsan Fazlıoğlu ve Aysu Albayrak asistan olarak katılmışlardır.

İstanbul Üniversitesi, Edebiyat Fakültesi Felsefe Bölümüne bağlı olarak kurulan ana bilim dalı 1989’da bölüm haline getirilmiştir. Bilim Tarihi Bölümünde 2 ana bilim dalı vardı: 1. Genel Bilim Tarihi Ana Bilim dalı; 2. Türk Bilim Tarihi Ana Bilim Dalıdır. 1999’a kadar bölüm olarak müstakil öğretim faaliyetini sürdüren Bilim Tarihi Bölümü, yeni bir kararla, yeniden İstanbul Üniversitesinde Felsefe Bölümüne bağlı bir ana bilim dalı haline getirilmiştir.

1982 yılından sonra, YÖK’ün kurulmasını izleyen yıllarda kurulan ve üniversitelerde fen-edebiyat fakültelerinde ders programlarına ve bazı lise seviyesindeki okulların ders programlarına bilim tarihi dersleri konmuştur. Programlarına bilim tarihi dersi konan üniversiteler arasında en gelişmiş anlamda uygulamanın yapıldığı üniversiteler Gazi Üniversitesi (Fen-Edebiyat Fakültesi ve Eğitim Fakültesinde), İstanbul Teknik Üniversitesi, Yıldız Teknik Üniversitesi, Ankara Üniversitesi- Fen Fakültesi, Eskişehir Anadolu Üniversitesi- Fen-Edebiyat Fakültesi ve Osman Gazi Üniversitesi- Fen-Edebiyat Fakültesi sayılabilir. Bazı üniversitelerde ise doktora seviyesinde bilim tarihi dersleri konmuştur. Hacettepe Üniversitesi- Tıp Fakültesi, Ankara Üniversitesi- Tıp Fakültesi, Boğaziçi Üniversitesinde bu uygulama yapılmaktadır.

Bütün bu açıklamalardan da anlaşılacağı gibi, bilim tarihi, bir disiplin olarak, diğer birçok disipline göre, örneğin felsefeye göre, deyim yerinde ise, bir bebek disiplindir, ancak yukarıda verilen açıklamalardan da anlaşılacağı gibi hızla gelişen bir disiplindir. Bu hızlı gelişme sadece Türkiye’de izlenmemektedir, aynı zamanda bütün dünyada hemen hemen durum aynıdır. Genellikle bilim tarihi ana bilim dalı seviyesinde eğitim ve öğretim yaptırmaktadır. Amerika’da sayın hocamız Aydın Sayılı’nın doktorasını yaptığı Harvard Üniversitesi bunun dışındadır. Orada öğrenim bölüm seviyesindedir. Dünyanın hemen hemen bütün saygın üniversitelerinde bilim tarihi derslerinin verilmekte olduğunu biliyoruz. Bunlar arasında, İngiltere’deki Cambridge ve Oxford Üniversitelerini de sayabiliriz.

Sonuç olarak diyoruz ki, çağdaş dünyayı yakalamaya çalışan Türkiye’de bilim tarihinin kültürümüzün temellerini anlamamızda ve felsefe bilim ilişkisini kavramamızda önemli katkıları olacağı kesindir. Nitekim bunun farkında olan bilim ve düşün adamları bu disipline ilgi duymakta ve özellikle de ilerleyen yaşlarında bu disipline doğru kayma eğilimi göstermektedir. Bunun en somut örneklerinden birisi, Cumhuriyet dönemi meşhur matematikçilerimizden Cahit Arf’tir. Yine bir başka örnek olarak da Erdal İnönü’yü verebiliriz.

Niçin bilim tarihi önemlidir? Bilim tarihi bilimsel merakın doğmasına yardımcı olur. Aynı zamanda bilim tarihi bir ülkenin kültürünün objektif olarak değerlendirilmesinde en önemli ölçüttür. Bilimin tarihteki ve halihazırdaki durumuna bakarak bir ülkenin gelişim süreci hakkında karar verebiliriz. Çünkü kültürün bir kolu olan felsefe yoruma açık bir disiplindir. Aynı şekilde sanatda subjektif bir disiplindir. Kültürün bir başka kolu olan din ise dogmatik bir disiplin olup, bir ülkenin gelişim süreci hakkında değerlendirme yapmamıza olanak vermez. Bilim ise kesin sonuçlarıyla toplumun nerede olduğunu; gelişip gelişmediğini açık ve seçik olarak gösterir.